

KineTcl

Andreas Kupries
ActiveState Software Inc.

© 2012

19th Annual Tcl Conference
National Museum of Health + Medicine Chicago

Chicago, IL
Nov 12 – Nov 16 2012

KineTcl
● Background
● Architecture
● Tricks
● Tools
● Future
● Demo

KineTcl
● Background
● Architecture
● Tricks
● Tools
● Future
● Demo

KineTcl - Background
● NMHMC Project

● Started January 2012
● Working system wanted by May
● Actually used since August

● Used in the Exhibition Hall
● Detect people approaching a display
● Send events to display controller

KineTcl
● Background
● Architecture
● Tricks
● Tools
● Future
● Demo

KineTcl - Architecture
● Existing software we could build on:

● OpenKinect (aka libfreenect)
– OSS Community
– Lifts reverse engineered USB protocol into user space
– Device access. No highlevel algorithms

● OpenNI
– PrimeSense (Depth Sensor manufacturer)
– Open Framework
– NITE middleware (user detection, skeleton tracking)

● Choose OpenNI for KineTcl, for NITE.

KineTcl - Architecture
● Layered, using C(riTcl) and Tcl(OO)

● C code lifts OpenNI handles (objects) into Tcl
– No (super)class hierarchy

● Tcl glues the C classes into the proper hierarchy
– And mix in the supported capability classes too.

KineTcl - Architecture

KineTcl
● Background
● Architecture
● Tricks
● Tools
● Future
● Demo

KineTcl - Tricks
● Instance Construction

● Avoid passing a C pointer (the OpenNI handle)
through Tcl.

● Leaf classes (C layer) create OpenNI object, and
store the resulting handle in a package-global, per-
interp data structure.

● Superclasses retrieve and use the handle instead of
creating OpenNI objects.

● Tcl layer (Base class) clears the communication
storage.
– After mixing the capability classes in.

KineTcl - Tricks
● Tcl Object → OpenNI Handle

● Done in cooperation between Tcl and C layers.
● C layer calls up with the Tcl_Obj* to convert.
● Tcl layer database of active objects can validate.
● Tcl layer knows the internals, invokes the special

methods to save handle information.
● C layer retrieves then uses the stored handle.

KineTcl - Tricks
● Object → Handle conversion

Sequence Diagram

KineTcl - Tricks
● Callbacks

● Called by OpenNI threads → Can't call Tcl directly.
– Solution: Convert Callbacks to Events, use

Tcl_ThreadQueueEvent(), Tcl_ThreadQueueAlert()
● Problem: A high-rate 'new frame' signal (@ 30 fps)

– Solution: Event-coalescing (like for Mouse Motion).
● Events delivered while Tcl processes events.

Queue is never empty, processing never ends.
– Solution: Defer delivery, save in spill-queue.
– Exposed to Tcl level: Hack.
– Future: Research Tcl “Event Sources” as means of hiding

KineTcl
● Background
● Architecture
● Tricks
● Tools
● Future
● Demo

KineTcl - Tools
● Critcl @ http://jcw.github.com/critcl/

● Specifically 3.1 because of
● critcl::class – Code generator package.

– Takes a TclOO-like class definition
– And generates all the C boilerplate needed for

● Class and instance data structures
● Class and instance Tcl commands.
● Method dispatch

– kinetcl::map : 4 KB critcl → 25 KB C
● CRIMP for images.

KineTcl - Tools
● Example:

critcl::class def ::kinetcl::CapFramesync {
 ::kt_abstract_class

 method can-sync-with proc {XnNodeHandle other} bool {
 return xnCanFrameSyncWith (instance->handle, other);
 }

 method start-sync-with proc {XnNodeHandle other} XnStatus {
 return xnFrameSyncWith (instance->handle, other);
 }

 method stop-sync-with proc {XnNodeHandle other} XnStatus {
 return xnStopFrameSyncWith (instance->handle, other);
 }

 method synced-with proc {XnNodeHandle other} bool {
 return xnIsFrameSyncedWith (instance->handle, other);
 }

 kt_callback framesync \
 xnRegisterToFrameSyncChange \
 xnUnregisterFromFrameSyncChange \
 {} {}
}

critcl::argtype XnNodeHandle {
 if (kinetcl_validate(interp, @@, &@A) != TCL_OK) return TCL_ERROR;
}

critcl::resulttype XnStatus {
 if (rv != XN_STATUS_OK) {
 Tcl_AppendResult (interp, xnGetStatusString (rv), NULL);
 return TCL_ERROR;
 }
 return TCL_OK;
}

KineTcl
● Background
● Architecture
● Tricks
● Tools
● Future
● Demo

KineTcl - Future
● Research into gesture recognition.

● Example: FAAST
– ICT http://projects.ict.usc.edu/mxr/faast/

Flexible Action & Articulated Skeleton Toolkit
● User recognition (geometric user hash)
● Tcl “Event Sources”

● Less exposure of event innards
● Implement things not used here at NMHMC

● Player, Record, Script?, Audio, Motor (Sensor Pan)
● Introspection, node stacks, non-default instances

http://projects.ict.usc.edu/mxr/faast/

KineTcl
● Background
● Architecture
● Tricks
● Tools
● Future
● Demo

KineTcl – Location

Where ?
● http://chiselapp.com/user/andreas_kupries/ \

repository/KineTcl
● On the USB-Stick

http://chiselapp.com/user/andreas_kupries/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

