C Raster Image Manipulation Package, et. al.

Andreas Kupries ActiveState Software Inc. © 2011

18th Annual Tcl Conference Comfort Suites, Manassas, VI Oct 24 – Oct 28 2011

- The Future in 2010
- Build System
- GSoC Participation
- Future

- The Future in 2010
- Build System
- GSoC Participation
- Future

CRIMP – Future?

- Add proper build system
 - Separate into Tcl- and Tk-dependent parts
- Continue extending the set of blocks
- Start using the blocks to assemble advanced operations.
- Look into multi-threaded operation.

- The Future in 2010
- Build System
- GSoC Participation
- Future

• Still Critcl

• (Still) Critcl 3

- (Still) Critcl 3
- Hidden behind
 - tclsh build.tcl install

- (Still) Critcl 3
- Hidden behind
 - tclsh build.tcl install
- Or
- tclsh build.tcl wrap4tea
 - Generates TEA-based packages, build them via
- configure ; make ; make install

- Critcl 3 provides inter-package stubs support
- Goal reached:
 - The Tk-dependent parts are in their own package
- More pieces actually:
 - crimp::core (Core data structures)
 - crimp (All the processing we had)
 - crimp::{ppm, pgm, pfm, bmp} (Import/export)
 - crimp::tk (Special I/O)

- The Future in 2010
- Build System
- GSoC Participation
- Future

CRIMP – GSoC I

- S. M. Saurabh, mentored by Kevin Kenny
- Direct project under the Tcl Umbrella
 - More Algorithms and pieces thereof
- <complex> Images + Operations
- Canny-Sobel/Deriche Edge Detection
- Wiener Filtering + Noise generators
- Translational Image Registration
 - Log-Polar Transform

CRIMP – GSoC II

- George Andreou, mentored by myself
- Tcl-Hwloc, a binding to HWloc
 - Portable Hardware locality
 - How many processing units are in your system ?
 - Precursor: TIP 377 (withdrawn)
- Indirectly supports CRIMP
 - Multithreaded operation, adapting to the environment

- The Future in 2010
- Build System
- GSoC Participation
- Future

CRIMP - Future

- Continue extending the algorithm base
 - Especially the image registration, to full affine, and hope for perspective.
- From Tcl-Hwloc
 - Have Thread-pools which adapt to the runtime environment
 - And use such in CRIMP when slicing operations into concurrently processed pieces.

CRIMP – Location

Where ?

- CRIMP
 - http://chiselapp.com/user/andreas_kupries/repository/crimp
- Critcl
- http://jcw.github.com/critcl/
- Tcl-Hwloc
 - http://code.google.com/p/tcl-hwloc/
- On the USB-Stick