
Eagle: Maturation and Evolution 
17th Annual Tcl Conference 

Joe Mistachkin 



Two years ago, at a conference far far 
away… 

•  Eagle was presented and there was much 
rejoicing. 

•  However, it was not all double-rainbows and 
flying unicorns. 



What is Eagle? 

•  Eagle is an open-source implementation of Tcl 
written in C# for the CLR. 

•  Designed to be highly extensible and easily 
embeddable into CLR-based applications. 

•  Supports approximately 90% of the Tcl 8.4 
core command set. 



What is Eagle, really? 

•  Originally designed for the purpose of 
providing a first-class library for scripting 
applications written for the CLR. 

•  All other considerations were secondary, 
including performance and full Tcl 
compatibility. 



What Eagle is not. 

•  Not based on the Microsoft Dynamic Language 
Runtime (DLR). 

•  Not intended for stand-alone application 
development. 

•  Unlikely to ever have a compiler. 

•  Not a replacement for Tcl or Jacl. 



I hate Microsoft, .NET, C#, etc. 

•  Ok, but you like Tcl; otherwise, you wouldn’t 
be here. 

•  Eagle is good for the Tcl community because it 
exposes Tcl to an audience that would 
otherwise have little or no exposure to it. 



What if 100% Tcl compatibility is 
required? 

•  The included wrapper can be used to access 
native Tcl from managed code. 

•  Fully discussed in the Eagle 2009 presentation, 
available for download. 



Where is the innovation? 
•  The “application is always right” attitude. 

–  The IHost interface, etc. 
•  One interpreter, multiple threads, safely. 
•  The “universal option parser”. 
•  The seamless integration with CLR objects. 

–  Full support for overload resolution, properties, methods, 
fields, and events. 

•  The built-in debugging support. 
•  Simple development / deployment model (i.e. the 

“add a reference and go experience”). 



Compatibility, performance, and me. 

•  There are still several major Tcl 8.4 features 
missing. 

•  The overall performance is still several orders 
of magnitude slower than Tcl. 

•  I’m still the only person working on the 
project. 



What is still missing? 
•  No Tk. 
•  No argument expansion syntax (i.e. {*}). 
•  No namespace support (except the global namespace). 
•  No asynchronous input/output. 
•  No [binary], [fblocked], [fileevent], [format], [glob], [history], 

[memory], [scan], or [trace] commands. 
•  For [open], command pipelines and serial ports are not 

supported. 
•  For [exec], Unix-style input/output redirection and command 

pipelines are not supported. 
•  No Safe Base. 
•  No [registry] or [dde] commands. 
•  No http, msgcat, or tcltest packages. 



Why no namespaces? 

•  Not enough time in the original schedule. 

•  It makes command and variable resolution far 
more complex. 



But, I really need namespaces. 

•  What steps have already been taken? 

•  Support for custom resolvers has already been 
added via the “default resolver” and the 
managed resolver API. 



Why no compiler? 
•  Not enough time in the original schedule. 

•  Raw performance was not a primary consideration. 

•  Being dynamic and correct is more important than being fast. 

•  Long running scripts can be evaluated (and canceled as 
necessary) in secondary threads. 

•  The CLR just-in-time compiler is already pretty good. 



Performance Problems 

•  Can be much slower than native Tcl, even for 
the simplest operations. 

•  Over time, targeted optimizations have been 
added for all critical code paths. 









What is slow? 

•  Parsing strings into lists. 

•  Building lists from strings. 

•  Expression evaluation, primarily string-to-type 
conversions. 

•  All other performance issues are insignificant 
compared to these three. 









Architectural Problems, Part 1 

•  The interpreter class is far too large. 
– Break into multiple files. 
– Move all entity management to a new component. 
– Move all shared state and its management to a new 

component. 
– Move all “helper” functionality to other classes 

unless they need access to interpreter internals. 
– The interactive loop code is too large. 



Major Components 



Architectural Problems, Part 2 

•  The engine is too recursive. 
– There would potentially be a lot of benefits from 

something like NRE. 

•  The components are too tightly coupled and 
have some circular dependencies. 



The Mono Saga 

•  Mono support was added prior to the 
conference last year. 

•  It has never been perfect because of serious 
bugs in the Mono platform. 

•  Eagle should build and run correctly on recent 
versions of Mono (e.g. 2.6.7 and 2.8) for 
Windows and Unix. 



How can I help? 

•  Test in your environments and report any 
issues you find. 

•  Contribute to the documentation and/or the test 
suite. 

•  Provide feedback, suggest features, or flames. 



Where is it? 

https://eagle.to/ 



Questions and Answers 


