
MikroConf: A framework for building
command-line interfaces, and specific
application for the administration of

Linux-based network devices.
Stergiakis Alexandros <alsterg@gmail.com>

September 28, 2010

Abstract
In this paper we present MikroConf, a framework for building Command-Line

Interfaces (CLI), and the application of it in the administration of Linux-based

network devices. MikroConf introduces a number of innovative features that

are unique even to commercial-grade products. It is written in Tcl and C, and

exploits many of Tcl's capabilities to provide an a rich and consistent interface

to users and developers alike.

Introduction
It is typical for large and complex software projects to incorporate a Command Line

Interface (CLI) for configuration and/or administration purposes. Such interfaces exploit a more

user-friendly, and robust human-computer interaction paradigm, compared to other configuration

methods, such as configuration files, shell CLIs and command-line parameters. In the case of

network devices, it has become a requirement for vendors to provide a CLI in conjunction with a

GUI. MikroConf is the best free/open-source candidate for this application.

Strictly speaking, MikroConf is both a framework for buidling CLIs and the specific

application for it in the administration of Linux-based network devices. In the rest of this paper

we always use this name to refer to the latter use, however, all of the features covered herein can

be applied into any other application.

MikroConf introduces a number of innovative features for the user of a network device:

• It supports (in a safe manner) in-line scripting in the Tcl Programming Language.

Regular configuration commands and Tcl commands can be intertwined on the command

prompt.

• It supports an event-based configuration paradigm. Tcl procedures can be registered

to be invoked when certain events occur (e.g. link up/down).

• Automation of repeated tasks via parameterized macros (Tcl procs).

• Command output can be captured, filtered, manipulated, emailed etc.

• Usability features such as: ANSI terminal colors and highlights, full screen editing of

configuration, and others.

These features enable administrators to be more productive, and achieve more robust device

configurations.

From the point of view of the developer, MikroConf offers a number of features that eases

extensibility and integration:

• It features a modular architecture. New device functionality is introduced in the form

of MikroConf modules, which can be easily written in Tcl or C. Dependencies are

handled automatically.

• There is clear separation between the declaration of command syntax and its

enforcement code (command handler).

• XML description of command structure, syntax and hierarchy,

authentication/configuration modes, running-config sections etc.

• The highest possible flexibility in specifying command syntax, described as a

deterministic finite automaton.

• Server-Client architecture and transport protocol independence. Multiple concurrent

user sessions are supported.

This paper describes the design and organization of MikroConf's framework, its unique

features, and how Tcl has been used to implement this design.

The MikroConf Architecture
MikroConf's architecture is divided into the framework and a number of application-specific

modules. The MikroConf Framework (or simply Framework) is the backbone on which

MikroConf modules (or simply modules) are attached to implement the various configuration

subsystems. For example, there can be a module for IP configuration, and another one for

dynamic routing.

The goal of the Framework is to make life easier for the developer, by providing a clear API

that he can use to easily implement new modules. The API automates most of the common tasks

involved in module writing and operation. Examples of such tasks are:

• Module (un-)registration and inter-module dependency handling.

• File system monitoring.

• Command, configuration/authentication mode (un-)registration.

• Logging.

• Dependencies with external binaries, kernel, busybox, or library features.

• Input/Output and error reporting and handling.

• Running external programs and daemons.

A MikroConf Module is a pluggable component that enables configuration of a specific

aspect of the system. It is universally identified by its name and its version number. It consists of

a set of Tcl source-code files and a set of XML files. These two sets of files help separate the

configuration enforcement code, from the aspects that pertain to the interaction paradigm.

Simpler modules would most likely have a single source-code file and a single XML file that

together constitute the whole module code.

The XML files, also called Specs files, define what we call in MikroConf, Module

Specifications. That includes:

• New configuration modes defined by the module

• New authentication modes.

• New commands and paths.

• The structure, syntax and description of each command.

• New running-configuration sections and entries.

The exact structure of a Specs file is described by a DTD document, included in

MikroConf's sources.

The Tcl source-code files, are collectively called Configuration Enforcement code. They are

comprised mostly by callback procedures, which are called at various occasions, such as when:

• The module is first loaded

• A command that belongs to the module is executed

• Another module is requesting an exported service

• The module is unloaded or reseted.

In case where many source-code files are used, one of them is the entry-level file, also called

Module file. This file is loaded first, and loads any other source-code files as necessary.

High-Level Design Choices
During the design and implementation of MikroConf we made a number of important

decisions, that have deep and long-lasting effect on MikroConf. In this section we discuss and

justify these high-level design choices.

Use of Interpreted Language
Applications for embedded systems are traditionally written in a compiled language, and in

particular in C. This practice is justified by the following facts:

• C is suitable for low-level system programming, which traditionally is needed for

deeply embedded systems. Such embedded systems don't feature a complete operating

system, but instead the embedded software must tackle with the hardware directly.

• C produces compact code with very few library dependencies, resulting in small

flash and memory footprint. The C standard library is quite small comparing to the

standard libraries of other languages like C++.

• Historically C compilers produce code that runs fast. However, newer compilers for

other languages produce equally fast code.

• C (like any compiled language) produces binary code that “hides” the source code on

the target device. This is desirable for Intellectual Protection, as well as for minimizing

exposure to patents and copyright threats of other parties.

With the advent of Linux and the increased capabilities of the hardware, many of these

factors have become invalidated. In particular:

• It becomes possible now to use C for the low-level system programming, and an

interpreted programming language for other parts of system programming, that don't

require low-level access to the hardware.

• The extra overhead of interpreted languages becomes bearable, as embedded systems

have grown in hardware resources, from a few hundreds of kilobytes of memory and

flash, to a couple of megabytes.

• The processor speed has also been increased, making possible to run the slower

interpreted programs with sufficient speed.

• Interpreted languages have been improved in technology. It is now possible to

compile interpreted code to bytecode that runs in a comparable speed to C programs.

Based on these facts, and contrary to the tradition, we decided to use a combination of

compiled and interpreted languages for MikroConf. C is used for the parts that need low-level

system programming, and for the rest Tcl, a high-level interpreted language. This combination

gives us the following advantages in comparison to using pure C:

• Easy debugging and patching. The code can change on the fly without recompilation

on the embedded system.

• Tcl is a glue language. This promotes re-usability of existing system-level

components (external programs), by glueing them together with a thin interpreted

language code layer.

• Speeds-up development process. Programming in Tcl is much more easier and

efficient than in a compiled language. Studies have shown that there is a 1-10

correspondence between Tcl and C code, in terms of lines of code. In other words, one

line of code of Tcl, would take ten lines of code if it was written in C (in average).

• Since less code is being written, it is easier to spot logical bugs in the code.

Use of Tcl
It turns out that Tcl is particularly suitable for the task, for the following reasons:

• Its syntax naturally resembles the customary user interface paradigm used in CLAIs,

which is: word1 word2 word3 ... So Tcl code and device configuration commands look

the same. Which means that both can coexist naturally on the same command prompt.

• The majority of Linux system configuration is performed via text commands or text

files, which makes Tcl a good choice, because everything in Tcl is text and it has superior

text processing capabilities.

• It’s easy to learn, both for developers (writing modules) and users (in-line scripting).

• The standard Tcl interpreter is quite small comparing to some other interpreted

languages, around 700kb, and there exist a number of different minimalistic TCL

implementations, which are less than 100kb.

• It turns out that the question mark and tab characters don't have any special meaning

in Tcl, and hence they can be used by MikroConf without breaking interoperability with

Tcl.

We found in Tcl a number of build-in features that were particularly helpful for the

development of MikroConf:

• The ability to rename and delete commands.

• Variable, command and execution traces.

• The build-in mechanism for finding and loading Tcl modules.

• The Tcl Virtual File System.

• Tcl threads and interpreters.

• The ability to customize error handling.

• The catch-all mechanism for commands that are not recognized.

• It's standard library and many other libraries and extensions.

• The Safe interpreter security mechanism.

Maximizing Outsourcing
To minimize development effort, one important design goal for MikroConf was to maximize

exploitation of what it is already offered by the FOSS community. The idea is to utilize existing

FOSS projects and mechanisms that are included in a typical Linux-based firmware, both for

configuration enforcement (set) and information retrieval (get). And since each individual FOSS

project uses radically different approaches for set and get, a glue language like Tcl, comes very

handy to integrate all these heterogeneous components together.

Drawing 1: Set/Get mechanisms MikroConf uses to interact with its software environment.

http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:SetGet.png

Set Method Examples
External Program Execution
(exec) Interface configuration (ifconfig)

Kernel Virtual Filesystems
(/sys, /proc) IP forwarding, Security options

Kernel Boot Parameters Console settings, Password recovery, Module parameters
CLI program arguments Busybox DHCP Client (udhcpc)
Application Configuration files DNS Server (dnsmasq)

System Configuration files Timezone (/etc/TZ), Static IP-Hostname mappings (/etc/hosts),
DNS Settings (/etc/resolv.conf)

SNMP SET Not currently used

Table 1: Configuration enforcement methods.

Get Method Examples
Syslog Debug messages (debug ...)

Program Output Interface Configuration (show interfaces), Logged-
in Users (show users)

Kernel Virtual Filesystems (/sys,
/proc) OS info

Low-level APIs through Tcl binary
extensions Checking POP3 mailbox (mail check)

SNMP GET Not currently used

Table 2: System information retrieval methods.

Authentication Modes
MikroConf supports arbitrary number of authentication modes organized in a tree hierarchy,

with increasing privilege level from the root to the leafs. Therefore the authentication mode on

the root is the less privileged of all. The side figure gives an example tree of authentication

modes. It consists of four modes: user, inspector, admin and priv, with corresponding privilege

levels: 0, 5, 15 and 15 respectively.

When a User logs-in to the system, he automatically enters the

root of the tree. In order to move to an other authentication mode, he

has to traverse the complete path that connects the two modes.

Certain commands can be made accessible only to authentication

modes of certain privilege level or higher. Due to the organization of

the authentication modes in a tree structure, this is the same like saying

that certain commands can be made available to subtrees of the complete tree of authentication

modes. Switching mode requires the execution of a MikroConf command, which of course must

be visible in the authentication mode we are switching from.

Different MikroConf Sessions can be artificially confined within different subtrees of the

complete tree of authentication modes. When this feature is used, then a session enters directly

on the root of its subtree, and cannot escape to authentication modes above its artificial root. We

will see why this feature is useful when we talk about Background Sessions in a later paragraph.

An authentication mode is declared by some MikroConf module which is called the owner

for this authentication mode. Thereafter, other modules can make use of this authentication

mode, as long as the owner module remains loaded.

Configuration Modes
Configuration Modes are in many ways similar to Authentication Modes. They are

organized in a tree structure, and moving around along the tree paths requires execution of

commands. Sessions can be confined in sub-trees of the whole tree of configuration modes, and

upon session establishment they always enter to the root of their tree.

Every configuration mode dictates the minimum privilege level required in order for its

commands to be executed. Individual commands within a configuration mode can optionally

impose a more restrictive privilege level, but not a less restrictive one.

The module that initially declares a configuration mode is the owner of this mode. Other

Drawing 2: A tree with
four authentication
modes.

http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:Authentication_Modes_Tree.png

modes can then expand it with their own commands. Hence, a configuration mode can be

collectively defined by many MikroConf modules, each of which defines a segment of it.

However, the owner of a mode should always remain loaded, as long as other modules rely on it.

Configuration Enforcement
In the previous section we enumerated the methods that we are using to apply configuration

directives in a MikroConf-enabled device. In this section we further elaborate, and discuss the

assumptions that we make, the overall design of our configuration enforcement approach, and

some of the internals of the implementation.

Design Choice: One way flow of configuration
In MikroConf, when setting configuration, actions are taken to enforce it on the surrounding

software environment. However, when showing configuration with the show running-
config command, the software environment is generally not queried. The answer will be based

on what MikroConf things is the case, which of course depends on the configuration commands

that have been successfully applied so far.

Conversely, if there is a bug in MikroConf and a configuration command is accepted but not

enforced, or if the underlying system configuration changes via other means, then show
running-config will show a configuration that does not correspond the “real” system

configuration. We can say that the running-config shows the intention of the administrator, and

not the actual system configuration. In the optimal case where there is no software bugs, the two

should be match. This is not necessarily the case for other show commands, that typically display

the output of external programs, which accurately reflect the actual system configuration.

This one-way flow of configuration greatly simplifies the design and implementation of

MikroConf modules. Otherwise, module writers would have to query the underlying system and/

or parse complex configuration files in order to derive the necessary information to generate the

running-config. Running a program with some arguments or writing a complex file, is far easier

than parsing the output that a program generates or a complex configuration file. Parsing would

most certainly need regular expression matching and/or parsing based on grammars (with

scanner and parser).

Drawing 3: The flow of running configuration
directives.

A side effect of this decision is that all configuration must go through MikroConf. No

manual configuration is allowed, or by any other means, at least for a subsystem that a

MikroConf module exists and is loaded.

MikroConf's Internal Configuration View is essentially Tcl variables, arrays and memory

objects that store the running configuration in the format that is most convenient to MikroConf

module. The running-config is generated based on this data. The startup-config on the other hand

is merely a regular file on the file systems.

Design Choice: Active generation of running-config
One approach in generating the running-config, is to merely remember the issued (and

successfully executed) commands, and listing them when the running config is requested. We

call this passive generation of the running-config, because it doesn't involve any Tcl code that

generates dynamically the running-config.

This approach has many flaws. One problem is that it is difficult to match the positive and

http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:OneWayConfFlow.png

negative forms of a command. Remember that the two forms don't need to have the same syntax,

and a negative command can cancel many positive ones at once. Therefore, merely recording

commands and listing them, has the problem that it is not possible with the information available

to match positive to negative commands and vice verse.

In any case, an approach must give satisfactory answers to the following questions:

1. One question is in what order to list the commands in the running-config. Merely

listing them in reverse order of execution is not enough.

2. A second issue is how to handle side-effects that the execution of a command can

have on other, previously executed commands. For example, turning off RIP dynamic

routing, should also remove all other RIP-related commands.

3. Sometimes the negative form of a command must be displayed, instead of the

positive form. An example is the no shutdown command under interface configuration

mode.

4. Sometimes a positive or a negative command takes effect by default, but is not

necessarily listed in the running-config.

5. And finally, any MikroConf module must be able to include commands for listing in

any place in the running-config, and at run-time.

The approach that we follow in MikroConf enjoys all this versatility.

There are two elements that together construct the in-memory representation of the running-

config: The Running-config Section (or simply section) and the Running-config Entry (or simply

entry). The in-memory representation is a tree structure, consisting of sections that include as

children other sections and/or entries. At each branch level on the tree all sections and entries are

ordered based on an Order Number assigned to them.

Each section has a name, a parent section, and an order number. Each entry has a parent

section, an order number, and a callback Tcl procedure. The callback Tcl procedure when

executed returns text that is displayed verbatim on the running-config.

When the running-config is requested, the algorithm visits all sections and entries in the tree,

starting with the root and progressing to the leafs in a depth-first fashion. At each branch the

section or entry with the smallest sequence number that hasn't been visited before is selected

first. When an entry is encountered, its callback procedure is executed and the returned value is

concatenated at the end of the “working” running-config. When all the tree nodes are visited the

algorithm terminates, and we have the complete running-config.

Drawing 4: Generation of running-config from in-memory tree representation. The curved blue
arrow shows the order with which the Depth First Search algorithm visits the tree nodes. The red
arrows point to the event handlers for the respective running-config entry.

Albeit versatile, this design has one disadvantage: Normally the syntax specifications for

MikroConf commands reside on a separate XML file (or many) that accompanies a MikroConf

module. With this design, a module's Tcl code also needs to be aware of the syntax of the

individual commands, since the commands have to be generated back from the Internal

Configuration View.

http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:RunningConfigGeneration.png

Design Choice: Apply anew on boot
As configuration commands are enforced on the software environment, files get written and

initialization scripts can change. These system files reflect the running configuration, but they are

not kept for next reboot. Instead, the startup-config is applied on boot and all configuration

enforcement operations are preformed again.

At first glance, this doesn't seem a good design, as the boot time increases. Keeping those

files would reduce boot time, because we wouldn't have to go through the normal command-

execution/command-enforcement loop of MikroConf.

However, there is a very good reason for doing so, which also simplifies MikroConf's

design. The problem arises when the hardware settings of the underlying device change between

two boots, or a MikroConf module is removed or get updated. When the system reboots, some

configuration files on the file system will not reflect the changed environment, and this can cause

hidden configuration or misconfiguration on the device.

On the other hand, if the startup-config is always applied on boot, and no system-level

configuration files are kept between reboots, then such changes in the hardware or software

environment will most likely cause an error in the execution of some of the commands in the

startup-config. MikroConf will reject the erroneous commands, and the system will remain in a

stable state.

Design Choice: Incremental Configuration
From what we have discussed so far, it must be clear that the running-config and the

underlying system configuration must be synchronized at all times. A configuration command

must always be reflected back to the operating system. This is an Incremental Configuration

approach, because it allows for single independent commands to be executed and take effect

immediately.

We also considered a non-incremental approach that seems to simplify the design, but we

ruled it out on the basis of failing user's assumptions. In the non-incremental approach we would

enter configuration commands at some point in time, and at some later point we would enforce

them all at once by entering the special command submit. Then the internal view would be

synchronized with the operating system. This approach makes module coding easier, because we

don't have to worry about the interactions between different commands. All command handlers

assume factory settings before they are executed.

For example consider the case: (it does not apply to MikroConf, but demonstrates the point)

Router(config)# service password-encryption
Router(config)# enable password foobar

In this simple example we enable password-encryption before we specify a password to be

encrypted. When the enable password command is later entered, it has to take into

consideration the possibility that password-encryption was previously requested, and hence the

password must be encrypted. With the non-incremental approach the enable password
command would always be executed first, and hence such conditional checks would not be

necessary. There are other more complex examples where the benefits of non-incremental

configuration become more apparent.

Information Retrieval
Most of the times the show commands will simply print verbatim the output of external

programs. Other, less often used methods, are to parse configuration files, query the /sys or /proc

kernel filesystems, or get the required information via a system-level API with a binary Tcl

extension. Last, it is also possible to use SNMP GET where-ever applicable.

Except for the show running-config command, all other show commands should

always reflect the actual configuration of the system, and not the perceived one.

Debugging Information
The debug command enables logging of extra debugging information, via the standard

MikroConf logging mechanism. This information is most often used for troubleshooting

purposes. Responsible for collecting the debug information is the module that owns the particular

debug command executed. For instance, the debug kernel command owned by the base

module is responsible for collecting extra kernel debug information and sending them over to

MikroConf's logging buffer. From there these messages will be sent to all active user sessions

that have their logging threshold to debug. A module logs debug info via the standard MikroConf

logging mechanism, which sends the logs to MikroConf's log buffer, as well as to the terminal of

every active user sessions (granted that their log threshold permits it).

Drawing 5: Flow of debug information.
Getting extra debug messages, might require patching of external applications, or special

compilation flags, or command line arguments. In any case, these messages can be sent from

within the application to syslog and from there MikroConf will pull them, or alternatively they

can be sent directly to MikroConf via a IPC mechansim, such as message queues.

Incidentally, MikroConf is using a message queue to pull the syslog messages directly from

the syslogd busybox applet.

User-Interface Independence
Since MikroConf modules already go into the length of implementing configuration

enforcement procedures for the CLAI, it is desirable to make these procedures accessible also to

other possible front-ends, via a appropriate generic interfaces. Three such possible administration

interfaces or front-ends are: Web-Gui, NMS, and SNMP. MikroConf is designed to allow all

three of them to be layered on top of MikroConf's configuration enforcement code, so that much

http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:Debug.png

of the work done for the CLAI can be reused for these interfaces as well.

One important design feature of MikroConf that enables this abstraction, is the separation of

the code that handles the user interaction (which is specific to the interaction paradigm), from the

code that enforces the actual configuration directives. Each MikroConf command has a

corresponding command handler. Command handlers do not receive the words that make-up the

command-line one-by-one and in the order they appear. Instead the command-line is broken

down into its components, these components are then recognized and passed-on to the handler in

the form of a dictionary. The handler can then check the dictionary for the desired information in

a convenient manner, without the need to do any parsing of its own. This makes possible to make

syntactic changes to a command, without updating the respective command handler, as long as

the dictionary remains the same.

An RPC mechanism can be used to export the command handler functionality to remote

processes, that follow different interaction paradigms.

Process Architecture
In this section we outline the architecture of MikroConf on a process level. In the following

discussion we assume that the reader is familiar with many of the terms used in the context of

Unix-like Operating Systems, such as: Process, Daemon, Shell, login process, Interprocess

Communication (IPC), Unix Domain Socket, and FIFO (or named pipe).

MikroConf, on a process level, is divided on the MikroConf Daemon (or simply the

Daemon) and the MikroConf Shell (or simply the Shell). At any given moment, only one

MikroConf Daemon can be running, while multiple MikroConf Shells can connect to it.

The MikroConf Shell is a normal shell like bash or ash, only that it gives the MikroConf

CLAI to the connected user. It is spawned by login after a successful authentication over the

network (telnet, ssh, ...) or a local (serial, ...) connection.

When a MikroConf Shell first starts, it connects to the MikroConf Daemon via a Unix

Domain Socket, in which the Daemon is constantly listening at. Via this connection it requests

for a new session to be allocated to handle the incoming connection. If the Daemon grands the

request, it sends back an acknowledgment (with some additional information) via the same

socket connection.

The socket connection is maintained throughout the existence of the session. If it breaks for

any reason, then both parties know that the session has been terminated, and the Daemon will

clean-up any session information, whereas the Shell will simply exit.

Drawing 6: Daemon - Shell Architecture.
After the Daemon sends back the acknowledgment, it creates two FIFOs to handle input and

output from/to the Shell. The Shell redirects its standard input (stdin) to the Input FIFO, the

Daemon reads the input from there and processes it. The Daemon writes any session-specific

output to the Output FIFO, from which the Shell reads it and redirects it to its standard output

(stdout). This way we have a continuous stream-oriented connection from the remote user to the

Daemon, for both input and output.

It might sound complex, but in actuality this is a very simple and elegant design, involving

simple and standard IPC mechanisms. Most importantly it makes MikroConf connection-

protocol unaware. MikroCon doesn't need to “speak” the various communication protocols that

can be used to connect remotely to a device. It will work with any remote shell protocol, so long

as there is a server implementation for it in the firmware.

http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:Deamon_Shell_Terminal.png

Thread Architecture
In the previous paragraph we outlined the architecture of MikroConf on a process level.

Now we will see how a MikroConf Daemon process is organized internally in threads. In this

discussion we assume that the reader knows the non-exclusive list of terms: Event loop, Threads,

Multi-threading, Synchronous and Asynchronous message passing, and Unix pipes.

Processes, Threads, Interpreters
MikroConf is a multi-threaded application, and it builds heavily on the threading

infrastructure provided by Tcl. Therefore, before we go ahead and talk about MikroConf's

internal architecture, we need to summarize Tcl's threading model. For a more in-depth

discussion of Tcl's threading model, please consult external resources.

A Tcl application can initialize and use many Tcl interpreters at the same time, organized in

a tree hierarchy. They can communicate by message passing, either synchronous (returned value

is waited upon) or asynchronous (returned value is not waited for). Initially, there is only one

interpreter, the Master interpreter, which is the root of the tree and can create other child

interpreters as needed.

A multi-threaded Tcl application has many threads, each one of them hosting a interpreter

tree. Threads can also communicate with each other via synchronous and asynchronous message

passing. Such a message has as source an interpreter in one thread, and as target the Master

interpreter of another thread. A multi-threaded Tcl application initially starts with one thread, the

Master thread, that can later create other threads. The thread organization is flat, not tree-like as

the interpreters.

Each Tcl thread has a single event loop which is shared among all hosting interpreters. Any

interpreter can send a job to be executed on the event loop of its thread, or to that of other

threads. If the job is sent synchronously, then the sender waits for the job to be completed before

execution resumes in that interpreter. If it is sent asynchronously, then the execution continues

immediately, and result is not waited for. At any given moment (assuming that the event loop is

not empty), there is a job being executed, while the remaining ones are waiting for their turn.

Drawing 7: Tcl's threading model.

Master, Session, and Slave
As aforementioned, MikroConf relies heavily on Tcl's threading model and interpreter

architecture. We start with a Master Thread that hosts the Master Interpreter. These two alone

implement the MikroConf framework.

For every incoming user connection, a new Tcl thread is created to handle it. This per-

session thread is called Session Thread, and its initial (or master) interpreter is called Session

Interpreter.

A Session interpreter handles user interaction for its session, among other session-specific

things. Each MikroConf Session is identified by a unique Session ID, which is essentially the

thread id that Tcl returns for the respective Session thread.

Each Session interpreter creates a child interpreter, which we call Slave Interpreter. User

commands and scripts are safely evaluated within this Slave interpreter.

The next Figure visualizes the information flow. User input that comes through the Input

FIFO is read by the Master interpreter and passed on to the respective Session interpreter with

the use of a Unix pipe. The Slave interpreter can only access the input stream indirectly via the

Session interpreter.

http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:Tcl_Process_Thread_Interp.png

Drawing 8: MikroConf's threading model.
As far as the output stream is concerned, both Master and Session threads maintain a direct

connection with the Output FIFO. The Session interpreter shares the file descriptor for the

Output FiFO with the Slave interpreter.

Next we give the rationale for the most important aspects of this design, in a FAQ fashion:

Why we need a per session thread

We need a separate Tcl thread for each user session, because we need a separate event loop

for each session. The reason we need a separate event loop is that we don't want user actions in

one session to block the whole MikroConf application (including other parallel user sessions).

This would be the case if we had a single thread (and therefore event loop) for the whole

MikroConf application.

For example, with the current design this simple endless loop executed in a user session

does not block the MikroConf framework itself or any other parallel user sessions, even though it

blocks the Session thread it is executed in (or better say, it puts it in runaway state):

http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:MikroConf_Architecture.png

Router> while {1} {puts “endless”}

Why we need a Slave interpreter for each session

We need the Slave interpreter for two reasons:

1. To enforce restrictive security policies on what Tcl code the user can execute on the

command line. The Session interpreter cannot be used for this purpose because it needs

full Tcl access, as it handles user interaction and other low-level stuff.

2. To hold any user defined procedures, variables and any other session state created by

the user. We don't want to contaminate the Session interpreter with user defined state.

Therefore, command line is evaluated in Slave, where security policy is enforced and user

state is isolated. User interaction and other stuff are handled by Session.

Why input stream has to go through the Master interpreter

First of all we need to remind the reader that it does not make sense to open a FIFO for read

by many threads, as it becomes non-deterministic which thread receives what part of the input.

However, a FIFO opened for write by many threads is ok, since all written data will eventually

end-up on the other end of the FIFO, albeit possibly mixed-up.

Having the above in mind, the reason why we needed the input to go first via the Master

interpreter is because we want the Master to intercept special keystrokes and enforce them in his

execution context. The primary keystroke that is intercept is the break key sequence, which

breaks any executed command. If the user prompt is blocked due to evaluation of a user script,

Master is the only interpreter/thread that can interrupt the evaluation of the script prematurely.

The same applies for other bocking cases.

Why we need to have two direct connection to Output FIFO

We need one connection from the Master in order to print messages and logs

asynchronously. And we also need one from the Session, obviously for allowing the user and the

Session interpreter to print messages to the terminal.

Background Sessions
One special type of session in MikroConf is the Background Session. This is like a user

session but without any user connected to it. Instead of being user-driven, it is event-driven.

MikroConf uses backgrounds sessions to evaluate event-handlers and to apply the startup

configuration on boot.

At any given time there is one background session active, that is used to evaluate event

handlers. This background session is called Events Session.

Security Policy
As aforementioned, a Tcl Security Policy is enforced within the Slave interpreter of each

session. A security policy defines what Tcl commands are accessible to the user of the session,

and with what functionality each. The policy depends on the authentication mode the user is

currently in. More privileged modes have access to more Tcl commands and of less-constrained

functionality.

We define three security policies:

• Background: This is for background sessions.

• Privileged: This is for user sessions in privileged mode.

• Default: This is for user sessions in user mode, and for any other session type for

which a security policy is not explicitly defined. This is the most constrained polity.

For each security policy we make some changes on the Slave interpreter, which constitute an

offset from Tcl's Safe Interpreter Base. The Tcl Safe Interpreter Base is a security policy build-in

to Tcl that is considered (by the Tcl developers) safe for most applications. As of Tcl 8.5.1 it is

defined as depicted in the next table. Of course it is subject to change in future versions of Tcl.

Command
state Build-in Tcl commands or procedures

hidden file socket open unload pwd glob exec encoding fconfigure load source exit cd

visible

tell subst eof list pid time eval lassign lrange fblocked lsearch gets case lappend
proc break variable llength return linsert error catch clock info split array if concat
join lreplace fcopy global switch update close for append lreverse format read
package set binary namespace scan apply trace seek while chan flush after vwait
dict continue uplevel foreach lset rename fileevent regexp lrepeat upvar expr unset
regsub interp puts incr lindex lsort string

visible alias clock

Table 3: The Tcl Safe Interpreter Base.
The actions that we take to modify Tcl's safe security base are:

• Hide: We hide additional Tcl commands.

• Expose: We expose previously hidden Tcl commands.

• Alias: We redefine the functionality of a Tcl command, usually by adding constraints

in it or special functionality.

Policy Action Commands/Procedures

Background
hide clock chan interp rename package
expose
alias unknown proc gets read fileevent fconfigure flush

Privileged
hide clock chan interp package
expose cd exec file glob load open pwd socket
alias rename proc unknown gets read fileevent fconfigure flush

User & Default
hide clock chan interp package
expose
alias rename proc unknown gets read fileevent fconfigure

Table 4: MikroConf's Security Policies.
You will find the rationale for these decisions documented inside MikroConf's sources

(policy.tcl).

Note that we disallow renaming, deleting, or overwriting build-in Tcl commands. These

actions are only possible for user-defined commands. User-defined commands must start with a

capital Latin letter, underscore or number. This is to avoid name collisions with MikroConf

commands, which could cause a lot of trouble to the administrator. This could also have security

implications (e.g. install malicious versions of MikroConf commands).

Logs
MikroConf has a central logging mechanism, which aggregates logs from many sources, and

handles, stores, and reports them centrally. Namely the event sources are:

• Syslog, the GNU/Linux system log facility. (From syslog we also get kernel log

messages that are sent by klogd)

• Output from external applications (like daemons).

• Messages logged in external log files, belonging to other applications.

• Messages logged by the user from on the command line.

• Messages generated by MikroConf itself.

Each log message is associated with the usual syslog properties: the time it was arrived, a

severity level, a facility, and a process name. Except for the messages that were pulled from

syslog, all the other messages are reflected to syslog as well. This is done so that we can use

busybox's syslogd applet to send over the messages to a remote syslog server.

Log entries are stored in a memory mapped file which resides on the file system. The

memory mapped region is written in a cyclic manner: when writes reach the end of the region,

they continue from the start of it. These two properties (regular file & cyclic writes) gives us a

persistent cyclic log buffer. Such a buffer offers two advantages:

1. The logs are persistent across reboots. If a MikroConf router crashes unexpectedly,

then after boot we can still find the error messages associated with the crash.

2. The log buffer always holds the newest/latest messages. Therefore, we don't have to

deal with log rotation manually.

Of course, for the log buffer to be persistent, the corresponding log file must reside in a

persistent file system. If this is not the case then the firmware vendor must write an event handler

for the LOG_BUFFER UPDATE tag/event, that is generated when the log buffer changes. This

event is rate limited. The event handler should copy the log file to a safe place, in a persistent file

system. The firmware vendor must also create an event handler for the SERVER BOOT

tag/event, to restore the log file from the safe place, back to its original place where MikroConf

expects to find it. This event is generated on boot, before the log buffer is loaded.

Events
MikroConf's event architecture allows for the following:

• A style of aspect oriented programming which makes the source code more

understandable and clear.

• Easy and straightforward customization from firmware developers, with no need for

knowledge of MikroConf's internals.

• Facilitates the implementation of MikroConf's event-based configuration paradigm.

An Event is a combination of two strings: a Tag and event Name. It can be emitted from

anywhere within the Framework or MikroConf Modules.

A generated event is received by the Event Dispatcher, which looks for any registered Event

Handlers for this tag/name combination. If handlers are found, they are executed in the order

they were registered. The dispatcher also passes on to each handler any parameters provided at

the moment of generation. Multiple event handlers can be associated with a single tag/name

combination.

Am Event ID uniquely identifies the exact binding, which can be later used to unregister the

event handler.

Event handlers can be executed synchronously or asynchronously. In the former case they

are executed right after the generated event, whereas in the latter, it is executed when the event

loop becomes idle.

Blocking
An important requirement in MikroConf is that the user should be able to break from any

executed command by pressing the break key sequence. This requirement affected MikroConf's

design a lot, since we have to look at every place where blocking can happen, and figure out a

way to interrupt it at user's request. All the possible places where blocking can occur are:

While executing an external program

Sometimes an external program can be long-running. Take for example a VI session. Those

programs should be executed with the ptyexec command that can be interrupted at any time.

While evaluating a Tcl user script on Slave

As we have seen, the Slave interpreter is where user scripts are evaluated, and during

evaluation the prompt is not available. We distinguish two cases of here:

1. A user script runs indefinitely, but without being blocked at any command (that is, it

is in a runaway state.

2. A user script has blocked at some command waiting for some something (e.g. some

input from a blocking channel).

None of these cases are addressed at the moment. This is an area that needs further

investigation.

While waiting for user input from the terminal

We provide a non-blocking version of gets, called sgets, that does not block the event loop

of the Session, when it is used to receive input from stdin. It works by emulating gets on a non-

blocking channel, as it is the case for the input stream of a session. Therefore, when a command

handler prompts the user for some input using the sgets procedure, the user can break out of it.

While executing the body of a command handler

There are times where some Tcl code can block, such as when waiting for a network event to

occur. For these cases where blocking is a possibility, we provide a solution in the form of two

commands: timeout and blocks. The former will interrupt execution of its body after a

predefined number of seconds (it uses the SIGALARM signal to wake up), whereas the latter

will execute its body in a different Tcl thread. The two commands can be used in conjunction, in

which case the timeout command should be in the body of the break command, and not the

other way around.

URL Types
Certain MikroConf commands accept a special URL type argument, which enables access to

local and remote locations. For example the copy command can be used to copy the running-

config from a remote/local location and then apply it.

Wrap# copy ftp://ftp.example.com/pub/running.config running-config

To provide such functionality we make use of Tcl's Virtual File Systems mechanism. We use

urltype Tcl VFS to create mappings for URL types to local directories, as well as Tcl VFSs which

export specific network protocols.

The following URL types are currently supported:

URL Type Location/Protocol
temp:// Maps to local directory: /tmp
flash:// Maps to local directory: /mnt/flash
system:// Maps to local directory: /
nvram:// Maps to local directory: /tmp/nvram
bootflash:// Maps to local directory: /mnt/boot
slot0:// Maps to local directory: /mnt/pcmcia0
slot1:// Maps to local directory: /mnt/pcmcia1
ftp:// Maps to the FTP protocol.
http:// Maps to the HTTP protocol.
webdav:// Maps to the WebDav protocol.
null:// Anything copied here is goes to the bit bucket.

Table 5: Tcl Virtual Filesystems.
More URL Types will become available in the future, such as nfs:// cfs:// shttp:// tftp:// scp://

ftp://ftp.example.com/pub/running.config

Another example of MikroConf command that uses URL types is dir:

Router> en
Router# dir temp://
Directory listing for temp://*
Perm Bytes Access Modified Name
drwe 4096 2008-05-22 2008-05-22 1/
drwe 4096 2008-05-22 2008-05-22 2/
-rw 5563 2008-05-22 2008-05-22 3
Router#

The Specs File Structure
The Specs file is an XML file that adheres to the following DTD specification:

 <?xml version="1.0" encoding="UTF-8"?>

 <!ENTITY end SYSTEM "xml/end.xml">
 <!ENTITY exit SYSTEM "xml/exit.xml">

 <!ELEMENT module (confmode*, authmode*, mainconf*, tree+)>
 <!ATTLIST module name NMTOKEN #REQUIRED>

 <!ELEMENT confmode EMPTY>
 <!ATTLIST confmode name NMTOKEN #REQUIRED
 string CDATA #REQUIRED
 parent NMTOKEN #REQUIRED
 >
 <!ELEMENT authmode EMPTY>
 <!ATTLIST authmode name NMTOKEN #REQUIRED
 string CDATA #REQUIRED
 parent NMTOKEN #REQUIRED
 privilege NMTOKEN #REQUIRED
 >
 <!ELEMENT mainconf EMPTY>
 <!ATTLIST mainconf name NMTOKEN #REQUIRED
 parent NMTOKEN #REQUIRED
 order NMTOKEN #REQUIRED
 >

 <!ELEMENT tree (path | command)+>
 <!ATTLIST tree conf NMTOKENS #REQUIRED
 priv NMTOKEN "0"
 >

 <!ELEMENT path (desc?, no?, (path|command)*)>
 <!ATTLIST path name NMTOKEN #REQUIRED>

 <!ELEMENT command (syntax?, desc, exec, print*, no?, argument*, grammar?)>
 <!ATTLIST command name NMTOKEN #REQUIRED>

 <!ELEMENT syntax (#PCDATA)>
 <!ELEMENT desc (#PCDATA)>
 <!ELEMENT nodesc (#PCDATA)>
 <!ELEMENT exec (#PCDATA)>
 <!ELEMENT print (#PCDATA)>
 <!ATTLIST print section NMTOKEN #REQUIRED>

 <!ATTLIST print order NMTOKEN #REQUIRED>

 <!ELEMENT no (syntax?, desc, argument*, grammar?)>

 <!ELEMENT argument (desc, nodesc?, type)>
 <!ATTLIST argument name NMTOKEN #REQUIRED>
 <!ELEMENT type (#PCDATA)>
 <!ATTLIST type name (exact|list|dlist|fixed|any) #REQUIRED>

Table 6: The DTD document that describes the structure of a Specs file.
In the following paragraphs we describe one-by-one the use of these XML entities.

Authentication Modes
An authentication mode (authmode) is declared with the XML element authmode. No two

MikroConf modules should declare the same authentication mode. Although any module can use

modes declared by other modules. Authentication modes form a tree hierarchy, with the user

necessary to be in the parent authmode in order to switch to the child.

The authmode element accepts the following XML attributes:

• name: The string that uniquely identifies the new authentication mode.

• string: The string to be displayed on the command line when user is in this mode.

• parent: The name of the parent authentication mode.

• privilege: The Privilege Level the new mode will be associated with. It must be

in the range of 0-15, where 15 is the maximum possible authority status.

For example, the two build-in authentication modes User and Privileged are defined with the

following two XML elements:

 <authmode name="user" string=">" parent="root" privilege="0"/>
 <authmode name="priv" string="#" parent="user" privilege="15"/>

As you can see both User and Privileged authmodes have as parent the special "root"

authmode. This is not really an authmode, but represents the root of the tree.

Configuration Modes
Configuration modes (confmode) are defined into two steps. In the first step, they must be

declared in a similar manner to authentication modes as we saw above. Like authentication

modes, they have name, parent, and string XML attributes with same function. Just like

authentication modes, a configuration mode is always declared by a single MikroConf module,

which is called the owner of the confmode. Other modules use it freely as long as the owner

module is loaded.

For instance, the declarations for the Entry and Global Configuration modes are:

 <confmode name="entry" string="" parent="root"/>
 <confmode name="global" string="(config)" parent="entry"/>

The second step is to create Command Trees for the previously declared configuration mode.

A Command Tree appears in the Specs file with the tree XML element, and it can host any

number of path and command elements. We will discuss these elements on the next section.

For the two aforementioned confmodes there are three Command Trees specified in base

module:

<tree conf="entry" priv="0">
 ...
</tree>

<tree conf="entry" priv="15">
 ...
</tree>

<tree conf="global" priv="15">
 ...
</tree>

As you can see, the conf attribute associates a command tree, with a previously declared

configuration mode. The priv attribute, on the other hand, says that all the commands (and

paths) contained within this tree are accessible to uses that have the specified privilege level or

higher.

You might have also noticed that a configuration mode can be spitted in many Command

Trees which can exist in the same Spec file. This is handy to categorize commands based on the

required privilege level. It is also possible for Command Trees to exist in different Specs files

(belonging to different modules) and collectively define a single configuration mode. This design

allows for instance the rip module to register commands that appear in the interface

configuration mode (which is owned by the interface module).

Beware that before a configuration mode is defined by a module, no other module can

register Command Trees for it.

Running Configuration Sections
The internal representation of the running-config is a tree structure, that comprises of

Sections and Entries. A running-config section is declared with the XML element:

 <mainconf name="..." parent="..." order="..."/>

For example, base module defines the followings:

 <mainconf name="register" parent="root" order="0"/>
 <mainconf name="auth" parent="root" order="10"/>
 <mainconf name="terminal" parent="root" order="20"/>
 <mainconf name="line" parent="root" order="40"/>
 <mainconf name="console" parent="line" order="10"/>

The name attribute is the name of the new section; parent is the name of the parent section;

and order is the Order Number of the new section. Obviously, no two MikroConf modules

should declare the same running-config section. Although any module can use sections owned by

other modules.

Paths, Commands and Arguments
Commands are declared in the module's Specs file, which is an XML file. Commands can be

added or removed at any time during a module's lifetime.

Any valid MikroConf command can be broken down to the following parts:

• The command path

• The command name

• Command arguments

Take for example the following three commands:

ip host gateway 10.143.200.1
ip domain-name aspisos.org
ip name-server 10.143.200.1

They all share the same path, which is ip. They have different command names: host,

domain-name, and name-server. And, of course, they support different arguments, which

is everything that follows after the command name.

Drawing 9: Break-down of an example command, in its
constituents.

The definition of the ip path in the above example could be:

<path name="ip">
 <desc>IP Configuration</desc>

 <command name=”host”> ... </command>
 <command name=”domain-name”> ... </command>
 <command name=”name-server”> ... </command>

</path>

A command XML element defines the entry-point for a MikroConf command. It accepts a

name attribute which is the word you need to enter on the command-line to access the

command. It also accepts a number of child-elements, which we discuss hereafter:

<syntax>
This element is optional. If present, its body describes how the command arguments can

appear on the command line. In other words, it defines the Command Syntax. Notice, that the

declaration of the arguments themselves is done by another element, the argument element,

which we discuss later. If this element is absent, then the command will not accept any

arguments at all; which is of course a valid option.

http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:CommandBreakdown.png

The syntax is described by a regular expression, which internally is processed as a

deterministic finite automaton. The states of the automaton correspond to the argument positions

on the command line. The arcs from each state are the arguments that are valid for the

corresponding position. The command's arguments are the elementary blocks of the regular

expression (the symbols accepted by the automaton). This design gives maximum flexibility and

control over how arguments can appear on the command line.

The regular expression in the body of this element is represented by a nested Tcl list, which

forms a syntax tree. The following structures are legal to appear in the regular expression:

Expression Description

{S x} Atomic regular expression. Everything else is constructed from these. "x" is the
name of an argument of the command, as declared with the argument element.

{. A1 A2 ...}
Concatenation operator. Accepts the concatenation of the regular expressions A1,
A2, etc. Note that this operator accepts zero or more arguments. With zero
arguments the represented language is epsilon, the empty word.

A1 A2 ...}

Choice operator, also called "Alternative". Accepts all input accepted by at least
one of the regular expressions A1, A2, etc. In other words, the union of A1, A2.
Note that this operator accepts zero or more arguments. With zero arguments the
represented language is the empty language, the language without words.

{& A1
A2 ...}

Intersection operator, logical and. Accepts all input accepted which is accepted by
all of the regular expressions A1, A2, etc. In other words, the intersection of A1,
A2.

{? A} Optionality operator. Accepts the empty word and anything from the regular
expression A.

{* A} Kleene closure. Accepts the empty word and any finite concatenation of words
accepted by the regular expression A.

{+ A} Positive Kleene closure. Accepts any finite concatenation of words accepted by the
regular expression A, but not the empty word.

{! A}
Complement operator. Accepts any word not accepted by the regular expression A.
Note that the complement depends on the set of symbol the result should run over.
See the discussion of the argument over before.

Table 7: Regular expression syntax rules.
The following picture depicts the deterministic automaton for the syntax of the telnet

command.

Drawing 10: Break-down of an example command, in its constituents.

<desc>
This element is mandatory. Its body is the help text that appears when the user presses the

question mark. It is advised to be less than 80 characters long.

<exec>
This element is also mandatory. Its body is the name of the command handler. If it is not

given with an absolute namespace path, then the handler is looked up in the private namespace of

the module.

Moreover, if additional arguments are provided in excess of the handler name, then these

arguments are passed verbatim as the first arguments of the command handler, (before the

standard API arguments).

<print>
<print section=”...” order=”...”>

This element is optional, but it can also appear multiple times. With every instance it

registers a callback procedure to be executed when generating the running-config. In other words

it registers a running-config entry.

The section attribute specifies the running-config section this entry should attach to, and

the order attribute specifies the Order Number for the entry. If an entry with the same order

number already exists, then the order of execution of the two entries is unpredictable. The section

a print element refers to must be previously defined with a mainconf element.

http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:CommandParsing.png

<no>
This element is optional. If present, it enables the negative form of the command. It can have

its own syntax, desc and argument child elements, which have the same function as those

for the command element.

When syntax is present, it defines the syntax for the negative form of the command, which

can be different from that of the positive form. The element syntax can involve arguments

declared either under the command or no elements. If an argument appears with the same name

under both command and no, then the one under no takes precedence.

Finally, the element desc specifies the help text for the negative form.

<argument>
<argument name=”...”>

Every instance of this element registers an argument for the command. There should be

exactly one instance for every distinct argument name that appears as symbol inside the syntax
element. The symbol name used in syntax and the name XML argument of this element must

match.

The argument element must have as child elements one desc and one type. Optionally

it can also have one nodesc element. The desc has exactly the same function as we have seen

so far, only that this time is for the argument. The nodesc, if present, specifies the help text for

the argument when the negative form of the command is used. If not present then help text for

the positive version is printed in both positive and negative forms.

Finally, the type element specifies the type of the argument. For instance, it can specify if

the argument accepts one of a finite number of fixed strings, or an arbitrary string. It has the

form:

<type name=”...”> ... </type>

The name XML attribute can be set to one of the literals: exact, list, dlist, fixed,

and any. Depending on what it is set to, the body of the element takes different meaning. We

will see each one of the cases separately:

<type name=”exact”/>

In this form, the argument accepts only one word, which is the string specified in the name
XML argument of the argument element. Command Completion and Abbreviation will

consider this word as an option, and In-line Help will display it as well.

An example use of this argument type is the command:

show running-config [all]

show is a path, and running-config is the command name, and all is a keyword that

can be implemented as an exact type argument.

<type name=”list”>item1 item2 item3 ...</type>

The argument accepts a finite number of words that are specified as a Tcl list on the body of

this element. Command Completion and Abbreviation will consider these words as alternatives,

whereas In-line Help will only list the name of the argument element and its associated help

text.

An example use of this argument type is the command:

log {debug | info | ... | critical | alert} message

The alternatives of the second argument are known in advanced, therefore we can implement

them with an argument type of list.

<type name=”dlist”>tcl_procedure_name</type>

This is similar to the list type above, but with the difference that the list of strings is

actually generated dynamically at run-time. It is done so by calling the

tcl_procedure_name procedure, which is expected to return a Tcl list. If

tcl_procedure_name is not in an absolute namespace path, then it is looked for in the

private namespace of the module which owns the command.

As with the list type, Command Completion and Abbreviation will consider all the

dynamically generated words as alternatives, whereas In-line Help will only list the name of the

argument element and its associated help text.

An example use of this argument type is the command:

interface {name0 | name1 | ...}

We don't know in advance all the available interface names. We can compute them, however,

at run-time when the command is being edited or executed. The dlist argument type is the

solution to this.

<type name=”fixed”>
 word1 {help text for word1}
 word2 {help text for word2}
 ...
</type>

This argument type explicitly lists all the words that the argument accepts, along with their

help message texts. The body of the element must be a valid Tcl serialized array. Command

Completion will consider the words as valid alternatives, whereas In-line Help will display them

along with the corresponding help messages.

This argument type exists solely to simplify the command syntax. It is equivalent to using

multiple exact argument types, set as alternatives in the command syntax. However, this will

enlarge the automaton that corresponds to the command syntax (one state per exact argument),

whereas with the fixed argument type we have a single automaton state for all keywords.

<type name=”any”/>

This argument type accepts any string as valid word. It is used for user supplied values that

cannot be confined within a finite number of alternatives, such as for the case of an email

address.

The syntax of the command should not allow two different arguments of type any to

compete for the same argument position, because in this case it is indecisive to which argument

the word should map to. Nevertheless, it is ok to combine argument types with finite number of

alternatives, with a single argument type of any.

Beware that multiple types for the same argument are not supported. You will need to define

different arguments of different types to accomplish this.

Conclusions
In this paper we presented MikroConf, a framework for building Command-Line Interfaces

(CLI), and the application of it in the administration of Linux-based network devices. We

covered MikroConf's design and implementation aspects the pertain to Tcl.

References
1. MikroConf Router Configuration Interface, http://mikroconf.sourceforge.net/

2. The Tcl Programming Language, http://www.tcl.tk/

3. Small Tcl, http://wiki.tcl.tk/1363

4. Tcl Modules, http://www.tcl.tk/cgi-bin/tct/tip/189

5. Tcl Script Cancelation, http://www.tcl.tk/cgi-bin/tct/tip/285.html

6. tcldoc Documentation Generator, http://tcl.jtang.org/tcldoc/tcldoc/tcldoc.html

7. taccle Parser, http://wiki.tcl.tk/11425

8. fickle Scanner, http://wiki.tcl.tk/3555

9. Tclx, http://tclx.sourceforge.net/

10. Memchan, http://memchan.sourceforge.net/

11. tcllib, http://tcllib.sourceforge.net/

12. TclTest, http://www.tcl.tk/man/tcl/TclCmd/tcltest.htm

13. TCL Modules, http://www.tcl.tk/cgi-bin/tct/tip/189

14. Tcl Binding to Tcl Virtual File System and urltype,

15. TclVfs, http://sourceforge.net/projects/tclvfs

16. Tcl Virtual File System, http://wiki.tcl.tk/2138

http://wiki.tcl.tk/2138
http://sourceforge.net/projects/tclvfs
http://www.tcl.tk/cgi-bin/tct/tip/189
http://www.tcl.tk/man/tcl/TclCmd/tcltest.htm
http://tcllib.sourceforge.net/
http://memchan.sourceforge.net/
http://tclx.sourceforge.net/
http://wiki.tcl.tk/3555
http://wiki.tcl.tk/11425
http://tcl.jtang.org/tcldoc/tcldoc/tcldoc.html
http://www.tcl.tk/cgi-bin/tct/tip/285.html
http://www.tcl.tk/cgi-bin/tct/tip/189
http://wiki.tcl.tk/1363
http://www.tcl.tk/
http://mikroconf.sourceforge.net/

17. Tcl SNMP Tools, https://sourceforge.net/projects/tcl-snmptools

18. Tcl Inotify, https://sourceforge.net/projects/tcl-inotify

19. Tcl POSIX Message Queues, https://sourceforge.net/projects/tcl-mq

20. Tcl Syslog, https://sourceforge.net/projects/tcl-syslog

21. Tcl PAM Authentication, https://sourceforge.net/projects/tcl-pam

22. Tcl mmap Interface, https://sourceforge.net/projects/tcl-mmap

23. The uClibc Project, http://www.uclibc.org/

24. The uClibc++ Project, http://cxx.uclibc.org/

25. The busybox Project, http://busybox.net/

26. The linux-pam Project, http://www.kernel.org/pub/linux/libs/pam/

27. The tDOM Project, http://www.tdom.org/

28. Tcl's Build-in Memory Introspection, http://wiki.tcl.tk/3248, http://wiki.tcl.tk/3248

29. The Net-SNMP Project, http://www.net-snmp.org/

30. The GNU Project, http://www.gnu.org/

31. The Linux Kernel, http://www.linux.org/

32. The Expect Project, http://expect.nist.gov/

33. Elliotte Rusty Harold, W. Scott Means, “XML in a Nutshell, 3 Edition”, O'Reilly

34. Simon StLaurent, Michael Fitzgerald, “XML Pocket Reference”, O'Reilly

35. Bouglas R. Mauro, Kevin J. Scmidt, “Essential SNMP, 2 Edition”, O'Reilly

36. Tony Stubblebine, “Regular Expression Pocket Reference”, O'Reilly

37. John E. Hopcroft, Rajeev Motwani, Jefrey D. Ullman, “Introduction to Automata

38. Theory, Languages, and Computation, 3rd Edition”, Addison-Wesley

39. Flemming Nielson, Hanne Riis Nielson, Chris Hankin, “Principles of Program Analysis”,

http://expect.nist.gov/
http://www.linux.org/
http://www.gnu.org/
http://www.net-snmp.org/
http://wiki.tcl.tk/3248
http://wiki.tcl.tk/3248
http://www.tdom.org/
http://www.kernel.org/pub/linux/libs/pam/
http://busybox.net/
http://cxx.uclibc.org/
http://www.uclibc.org/
https://sourceforge.net/projects/tcl-pam
https://sourceforge.net/projects/tcl-syslog
https://sourceforge.net/projects/tcl-mq
https://sourceforge.net/projects/tcl-inotify
https://sourceforge.net/projects/tcl-snmptools

Springer

40. W. Richard Stevens, “TCP/IP Illustrated, Volume 1: The Protocols”, Addison-Wesley

41. Ethan Cerami, “Web Services Essentials”, O'Reilly

42. The Etch Protocol, http://en.wikipedia.org/wiki/Etch_(protocol)

43. The SOAP Protocol, http://en.wikipedia.org/wiki/SOAP

44. The CORBA Protocol, http://en.wikipedia.org/wiki/CORBA

http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Etch_%5C(protocol)>>
>>
endobj

163 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[205.3 305.7 311.4 319.5]/A<</Type/Action/S/URI/URI(http://expect.nist.gov/)>>
>>
endobj

164 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[199.3 332.4 304.4 346.2]/A<</Type/Action/S/URI/URI(http://www.linux.org/)>>
>>
endobj

165 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[198 359.1 296.5 372.9]/A<</Type/Action/S/URI/URI(http://www.gnu.org/)>>
>>
endobj

166 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[225.5 385.8 350.6 399.6]/A<</Type/Action/S/URI/URI(http://www.net-snmp.org/)>>
>>
endobj

167 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[399.6 412.5 505.7 426.3]/A<</Type/Action/S/URI/URI(http://wiki.tcl.tk/3248)>>
>>
endobj

168 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[288.9 412.5 395 426.3]/A<</Type/Action/S/URI/URI(http://wiki.tcl.tk/3248)>>
>>
endobj

169 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[203.3 439.2 308.4 453]/A<</Type/Action/S/URI/URI(http://www.tdom.org/)>>
>>
endobj

170 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[221.3 465.9 425.8 479.7]/A<</Type/Action/S/URI/URI(http://www.kernel.org/pub/linux/libs/pam/)>>
>>
endobj

171 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[212.6 492.6 304.4 506.4]/A<</Type/Action/S/URI/URI(http://busybox.net/)>>
>>
endobj

172 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[217.5 519.3 319.4 533.1]/A<</Type/Action/S/URI/URI(http://cxx.uclibc.org/)>>
>>
endobj

173 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[204 546 313.8 559.8]/A<</Type/Action/S/URI/URI(http://www.uclibc.org/)>>
>>
endobj

174 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[230 599.4 420.2 613.2]/A<</Type/Action/S/URI/URI(https://sourceforge.net/projects/tcl-pam)>>
>>
endobj

175 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[164.2 626.1 364.4 639.9]/A<</Type/Action/S/URI/URI(https://sourceforge.net/projects/tcl-syslog)>>
>>
endobj

176 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[250.1 652.8 435 666.6]/A<</Type/Action/S/URI/URI(https://sourceforge.net/projects/tcl-mq)>>
>>
endobj

177 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[163.4 679.5 364.9 693.3]/A<</Type/Action/S/URI/URI(https://sourceforge.net/projects/tcl-inotify)>>
>>
endobj

178 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[193 706.2 411.9 720]/A<</Type/Action/S/URI/URI(https://sourceforge.net/projects/tcl-snmptools)>>
>>
endobj

179 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[224.5 119.8 330.6 133.6]/A<</Type/Action/S/URI/URI(http://wiki.tcl.tk/2138)>>
>>
endobj

180 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[145.8 146.5 321.3 160.3]/A<</Type/Action/S/URI/URI(http://sourceforge.net/projects/tclvfs)>>
>>
endobj

181 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[180.5 199.9 353.2 213.7]/A<</Type/Action/S/URI/URI(http://www.tcl.tk/cgi-bin/tct/tip/189)>>
>>
endobj

182 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[148.3 226.6 365.8 240.4]/A<</Type/Action/S/URI/URI(http://www.tcl.tk/man/tcl/TclCmd/tcltest.htm)>>
>>
endobj

183 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[138 253.3 273.2 267.1]/A<</Type/Action/S/URI/URI(http://tcllib.sourceforge.net/)>>
>>
endobj

184 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[161.3 280 318.5 293.8]/A<</Type/Action/S/URI/URI(http://memchan.sourceforge.net/)>>
>>
endobj

185 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[134.5 306.7 263.1 320.5]/A<</Type/Action/S/URI/URI(http://tclx.sourceforge.net/)>>
>>
endobj

186 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[181.8 333.4 287.9 347.2]/A<</Type/Action/S/URI/URI(http://wiki.tcl.tk/3555)>>
>>
endobj

187 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[173.8 360.1 285.5 373.9]/A<</Type/Action/S/URI/URI(http://wiki.tcl.tk/11425)>>
>>
endobj

188 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[270.1 386.8 481 400.6]/A<</Type/Action/S/URI/URI(http://tcl.jtang.org/tcldoc/tcldoc/tcldoc.html)>>
>>
endobj

189 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[220.4 413.5 418.1 427.3]/A<</Type/Action/S/URI/URI(http://www.tcl.tk/cgi-bin/tct/tip/285.html)>>
>>
endobj

190 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[173.5 440.2 346.2 454]/A<</Type/Action/S/URI/URI(http://www.tcl.tk/cgi-bin/tct/tip/189)>>
>>
endobj

191 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[159.3 466.9 265.4 480.7]/A<</Type/Action/S/URI/URI(http://wiki.tcl.tk/1363)>>
>>
endobj

192 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[269.2 493.6 355.2 507.4]/A<</Type/Action/S/URI/URI(http://www.tcl.tk/)>>
>>
endobj

193 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[318.9 520.3 479.5 534.1]/A<</Type/Action/S/URI/URI(http://mikroconf.sourceforge.net/)>>
>>
endobj

194 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[71.4 219.7 540.8 359.8]/A<</Type/Action/S/URI/URI(http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:SetGet.png)>>
>>
endobj

195 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[73.2 618.7 191.6 714]/A<</Type/Action/S/URI/URI(http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:Authentication_Modes_Tree.png)>>
>>
endobj

196 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[191.8 437.8 417.5 666.6]/A<</Type/Action/S/URI/URI(http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:OneWayConfFlow.png)>>
>>
endobj

197 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[71.4 281.2 540.8 625.2]/A<</Type/Action/S/URI/URI(http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:RunningConfigGeneration.png)>>
>>
endobj

198 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[71.4 423.9 540.8 598.4]/A<</Type/Action/S/URI/URI(http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:Debug.png)>>
>>
endobj

199 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[71.4 361.2 540.8 577.7]/A<</Type/Action/S/URI/URI(http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:Deamon_Shell_Terminal.png)>>
>>
endobj

200 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[71.4 491 540.8 713.9]/A<</Type/Action/S/URI/URI(http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:Tcl_Process_Thread_Interp.png)>>
>>
endobj

201 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[71.4 414.6 540.8 714]/A<</Type/Action/S/URI/URI(http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:MikroConf_Architecture.png)>>
>>
endobj

202 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[151.7 491.1 457.6 596.1]/A<</Type/Action/S/URI/URI(http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:CommandBreakdown.png)>>
>>
endobj

203 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[116.4 614.9 492.8 713.9]/A<</Type/Action/S/URI/URI(http://sourceforge.net/apps/mediawiki/mikroconf/index.php?title=File:CommandParsing.png)>>
>>
endobj

232 0 obj
<</Type/Catalog/Pages 204 0 R
/OpenAction[1 0 R /XYZ null null 0]
/Lang(en-US

