
Exploring Tcl Iteration Interfaces

By Phil Brooks

Presented at the 19th annual Tcl/Tk conference, Chicago Illinois November 2012

Mentor Graphics Corporation
8005 Boeckman Road
Wilsonville, Oregon
97070
phil_brooks@mentor.com

Abstract--- In Mentor Graphics' Calibre verification tool, Tcl is frequently used as a
customer extension language - allowing customers to customize and drive the tool through
various exposed interfaces. These interfaces are frequently used to access large collections
of application data and provide a wide variety of mechanisms for iteration over that data.
This paper will examine several interfaces that have been used for iteration over large C++
data structures along with the benefits and drawbacks of each method. Methods explored
include Tcl lists, indexed array-like access, iterator object accessor (similar to C++ STL
iterators), and specialized foreach style commands. Example stand alone implementations
are provided and discussed from within the context of their original use in Calibre
customer scripting interfaces. Ease of use and performance are considered.

1 Introduction

The simple task of iteration over each object in a container is one of the most common in
programming. The task is so common that every programming language tends to develop
common idioms for the form. Simple expression of the concept of iteration in a vernacular form
aids readability and maintainability of code. In Tcl where the list is the most commonly used
aggregate data structure, the foreach command is the standard for an iterative vernacular:

set test_list { a b c d }
foreach var $test_list {
 puts $var
}

mailto:phil_brooks@mentor.com

When C based Tcl_Obj object interfaces that represent collections of underlying objects are
being used, the foreach command itself is of little use since it works only with Tcl lists. So for
iteration, either the Tcl object must convert its contents into Tcl list form, or another interface
must be constructed for iteration over the object data sets. The remainder of this paper considers
potential interfaces for this purpose.

2 Demo Environment

All of the demo interfaces used in the example program are providing access to the contents of a
C++ array of doubles - or in C++ “std::vector<double>”. A Tcl program is used to iterate over
the contents and to accumulate a result which is returned to the C++ program. The context of the
environment is that of a customized analysis routine that is called from the C++ application. The
Tcl interface allows an end user to perform custom calculations without having access to the
application C++ source code or having to manage a C compilation environment. The Tcl
program has read only access to the C++ vector.

Since the Tcl routine is called directly from the C++ program, a record based user interface is
provided so that the user can direct the application with the name of the Tcl script and the proc to
call. In the Mentor Graphics Calibre environment, these Tcl calls are specified from the Standard
Rulefile Verification Format (SVRF) language that makes up the bulk of the application's
programming interface.

In this example program, a configuration file specifies the name of the Tcl script, a proc to call,
and the iteration interface that is to be selected (from the 4 we are describing).

These fields are specified as simple text fields on a single line of the file:

<script_file> <called_proc> <interface>

For example:

list_user_script.tcl do_calculation list

describes list_user_script.tcl as the script file, calc_abmi as the Tcl proc, and the list generation
interface as the interface to provide.

3 Loading the script file

After the config file is read, the script file itself is read and evaluated in the Tcl interpreter so that
it can be called repeatedly as the application progresses through its data set. This is accomplished
by first creating a Tcl_Obj that will contain the script:

Tcl_Obj* tcl_script = Tcl_NewObj();
Tcl_IncrRefCount(tcl_script);

(Note that code examples in the paper are sometimes slightly altered for brevity from the
example program.) Then, the following code adds the script, line by line, to that object using
Tcl_AppendStringsToObj:

std::ifstream file_loader(load_file.c_str());
std::string load_line;
while(file_loader) {
 std::getline(file_loader, load_line);
 Tcl_AppendStringsToObj(tcl_script,
 load_line.c_str(), "\n", NULL);
}

The script file itself is now loaded into the interpreter using Tcl_EvalObjEx:

rc = Tcl_EvalObjEx(interp,tcl_script,TCL_EVAL_GLOBAL);

Now the interpreter is ready to run the indicated proc for each vector in the analysis set.

4 Exploring the Iteration Interfaces

The main body of the paper explores several interfaces that an application can present to user
through the Tcl C Tcl_Obj and Tcl_ObjType interfaces. The goal for these interfaces is to provide
users simple and intuitive access to large native application datasets in an efficient manner that
looks at least vaguely familiar and intuitive to Tcl users.

4.1 Accessing a Tcl List directly

The most natural and straight forward mechanism for iteration in Tcl is simple iteration through a
Tcl list:

proc do_calculation input_list {
 # now iterate
 foreach var $input_list {
 puts $var
 }
}

The Tcl list is, then, a very straight forward mechanism to providing access to application data.
The Tcl List interface is used in the Calibre product's LVS Device recognition application in
order to provide access to a (usually) short set of numbers describing proximity of features near a
transistor. Lists in the example program are constructed using the Tcl_ListObjAppendElement
interface. The command is invoked by name (from the proc_name argument), with the list passed
in the second field of the command:

//
// Tcl List construction from a C++ std::vector<double>
//
Tcl_Obj *command[2];
command[0] = Tcl_NewStringObj(proc_name.c_str(), -1);
Tcl_IncrRefCount(command[0]);
command[1] = Tcl_NewObj(); Tcl_IncrRefCount(command[1]);
for(std::vector<double>::iterator i = data.begin();
 i != data.end(); ++i)
{
 Tcl_ListObjAppendElement(interp, command[1],
 Tcl_NewDoubleObj(*i));
}

After construction of the list, the command text and the list are passed in to the calling script
using Tcl_EvalObjv with the script text as the first argument and the list as the second argument.

int rc = Tcl_EvalObjv(interp,2,command,TCL_EVAL_GLOBAL);

Since the interface here is through a real Tcl list, this method presents the most natural interface
to the Tcl programmer. Its main drawback is that the data structure must be fully copied from its

native C++ into the Tcl list. For applications that have very large datasets, or high performance
goals, the overhead required to form the Tcl list may be unacceptable. For those applications, the
other access mechanisms may be more appropriate.

4.2 Access through an Index

The second interface demonstrated uses an index for random access into the contents of the
container:

proc do_calculation my_arr {
 # returns an object count
 set entry_count [$my_arr entry_count]
 # iterate using an index
 for { set i 0 } { $i < $entry_count } { incr i } {
 puts "my_arr $i => [$my_arr value $i]
 }
}

The interface to the array is provided through the Tcl_CreateObjCommand interface.. In order to
construct that interface, the example program uses Tcl's Tcl_CreateObjCommand interface.

Tcl_CreateObjCommand(interp,"arg1",
 vector_interface,data,NULL);

This call creates a command object named “arg1”, bound with data pointer data, and
implemented through the some_stats_vector_interface function. The name “arg1” is arbitrary and
it is only used when inside the application as seen below. Inside the called proc, this command is
bound to a parameter of the called proc. This technique allows the end user to select meaningful
names for what are potentially a large number of parameters that all have real names that aren't
very meaningful to the end user.

Next, the index_interface function provides implementation for the required commands:

int index_interface(
 ClientData cd,
 struct Tcl_Interp *interp,
 int objc,
 Tcl_Obj *CONST objv[])
{
 std::vector<double>* data =
 static_cast<std::vector<double>*>(cd);
 const char* command =
 Tcl_GetStringFromObj(objv[1], NULL);
 if (strcmp(command, "size") == 0) {
 f size_t sz = data->size();
 Tcl_Obj *result=Tcl_NewLongObj(sz);
 Tcl_IncrRefCount(result);
 Tcl_SetObjResult(interp, result);
 } else if (strcmp(command, "value") == 0) {
 ...

The object command is passed along with the name of the proc as an argument to
Tcl_EvalObjEx. This is where the name “arg1” is used. It is not visible to the user (unless the
user knows to look for it).

std::string invoke_line = procname;
invoke_line.append(" arg1");
int rc = Tcl_Eval(interp,invoke_line.c_str());

The array index interface is used in the Calibre product's LVS Device recognition application in
order to provide access to a randomly accessible array of measurement numbers related to a
transistor. The advantage of this method over the constructed List method is mainly efficiency.
The contents of the C++ vector are accessed directly by methods implemented through the
Tcl_CreateObjCommand interface. The interface is not nearly as elegant as the list interface for
simple iteration over the contents of a container. It also isn't suitable for data that doesn't fit an
index->value retrieval model. The next interface extends the index to a more fully fledged
iterator accessor.

4.3 Using an iterator interface similar to C++ iterators

The C++ standard library provides a convenient common mechanism for iteration through
containers. That mechanism is called the 'iterator'. The code looks like this if you want to iterate
through all members of an array of doubles called 'data' printing each item on a separate line:

std::vector<double>::iterator i = data.begin();
while (i != data.end()) {
 std::cout << *i << std::endl
 ++i;
}

We might construct a similar interface in Tcl where code could look like this:

set my_iter [$data get_iterator]

while { ! [$data at_end $my_iter] } {

 puts "my_arr $i => [$data value $my_iter]

 $data incr $my_iter

}

In the example program, the iterator interface is constructed from two parts. The record is
accessed via a Tcl command object that is similar to the one used in the indexed interface. In the
place of the index, the iterator is a full fledged Tcl_ObjType object. It can retain state and
independent settings from the container itself. It is also more vulnerable to going out of synch
with the container, so may require mechanisms to void its validity if the container changes state
while the iterator is still in existence. The initialization of the command object is pretty much the
same, using Tcl_CreateCommandObj, as it is for the indexed access. The commands supported
by the implementation command are:

• get_iterator - returns an iterator to the beginning of the data container

• at_end - indicates the iterator is past the last data item in the data container

• incr - moves the iterator to the next item in the container

• value - retrieves the value represented by the iterator

The iterator itself represents the std::vector<double>::iterator and that is its only data member in
this implementation. That is actually quite inadevalue quate since the vector iterator is
represented by a raw pointer into the memory of the data vector. As long as the data vector
remains in its original state, the iterator is fine. If the data container is altered or goes away, the
iterator should, in fact, be invalidated immediately. This would normally be done with some sort
of Observer pattern where the interface retains a list of active iterators and can void them when
ever any operation occurs that would invalidate an iterator.

The Tcl_ObjType interface that contains the iterator pointer is implemented using the standard
name and set of type handling functions for free, duplicate, update_string and set_from_any.
These functions manage the access to the C++ iterator.

The iterator style interface is used in the Calibre product's Yield Server application to access a
wide variety of EDA design data like electrical nets, devices, design cells, and geometries etc.

5 Exploring more consistent interfaces

The implementations explored thus far have resulted in vastly different Tcl code because of the
mechanics of the underlying iteration mechanism and the fact that the Tcl foreach command is
strictly a list-based iteration mechanism. In the next section, two methods of providing a more
generic interface are explored. While the foreach command is strictly list based, a specialized
foreach-like command can be used to soften the differences between the custom interfaces and
the Tcl list interface. Coroutines, new to tcl, are also referred to as generators. They provide a
potentially much more powerful and consistent interface to the problem of iteration.

5.1 Using a specialized foreach command

It is possible to adapt the interfaces presented earlier to get closer to the syntactic simplicity of
the original foreach loop around the list. A specialized foreach-like command can be
implemented that allows use of syntax that is very similar to the original foreach implementation
on the list. The specialized foreach command can hide the differences between the various access
interfaces allowing the user routine to The example program implements such a foreach_instance
command on top of the indexed access method presented earlier. It does this with a specialized
command “foreach_instance” which allows the following interface:

proc do_calculation record {
 foreach_instance value $record {
 puts $value
 }
}

which is very close to a Tcl List interface:

proc do_calculation record {
 foreach value $input_list {
 puts $value
 }
}

This foreach_instance command is implemented entirely in Tcl - and it hides the complexity of
the index access interface. The foreach_instance proc is implemented as:

proc foreach_instance { var1 record body } {
 set vlen [$record size]
 upvar 1 $var1 value# now iterate
 for { set i 0 } { $i < $vlen } { incr i } {
 set value [$record value $i]
 uplevel 1 $body
 }
}

The foreach style top level command is used by the Calibre LVS Comparison application's
device reduction application to give iterative access to a potentially large singly linked list of
devices. While the two scripts are quite similar, they vary on the name of the critical foreach
command itself. In the next section, use of a coroutine allows the difference to be obscured using
another mechanism.

5.2 Using a Tcl coroutine with the index interface

Implementing a coroutine interface further explores the iterative style command in the context of
coroutines. Using the coroutine, like the specialized foreach command, requires a specialized
adapter routine that traverses the data structure for another command that is doing the
calculation. One simple way to traverse a coroutine until it is empty follows. This example uses a
coroutine to traverse a Tcl list:

proc do_calculation { record } {
 coroutine data_fetcher get_from_record $record
 while 1 {
 puts [data_fetcher]
 }
}

In this proc, the coroutine data_fetcher is created from the proc get_from_record (not shown) and
its argument $record, the list of data. It then goes into a while loop that prints the value of each
item in the list. The loop is broken when data_fetcher returns with a -code break return code that
indicates the end of the list. Next is the implementation of a list iteration form of
get_from_record:

proc get_from_record record {
 yield [info coroutine]
 foreach value $record {
 yield $value
 }
 return -code break
}

This calculation proc can remain unchanged while the get_from_record proc changes to cover a
different interface - in this instance, the index interface shown above:

proc get_from_record record {
 set vlen [record size]
 yield [info coroutine]
 for { set idx 0 } { $idx < $vlen } { incr idx } {
 yield [$the_record value $idx]
 }
 return -code break
}

Tcl Coroutines are not currently used in the Calibre application family which is still using Tcl
8.4.

6 Conclusion

While Tcl provides a number of high performance adaptable interfaces to a C application
programmer, iteration over a data collection is still quite cumbersome due to the differences in
handling C object type collections and Tcl lists. These differences in interface are overcome in
certain situations through the use of a customized foreach-like command, but that approach has a
drawback in that the foreach-like command itself is specific to its data container. Coroutines
provide promise for providing a common iteration mechanism within Tcl, though the language
feature is new and idioms are not yet well developed.

7 Acknowledgments

Special thanks go to Donal K. Fellows for his assistance in writing the specialized foreach
command and coroutine adapter interfaces.

