
Bringing Context to the Internet of Things
Dr. Emmanuel Frécon

This paper is dedicated to my newly become wife
Abstract—The context manager is aimed at being

the hub of the house, a place where all sensors
report (directly or indirectly) their data, sometimes in
aggregated form, but also where all applications will
search for information relevant to them, i.e. sensor
values, location or information about their surround-
ings. The context is instantiated from a dynamic
model to fit the needs of a variety of scenarios and
settings. The manager provides an easy-to-use Web
API and integrates external cloud services relevant
for applications running in the house.

Index Terms—IoT, Tcl, REST, JSON, Web, Inte-
gration, Web Services, Sensors, Actuators, Middle-
ware, Energy, Smart Homes

I. INTRODUCTION

THE Internet of Things promises a near future
where domestic and work environments, but

also cities and factories, are augmented with sensors
and actuators that all are Internet entities. The
deployment of IPv6 is key to this evolution by
enabling each sensor or actuator to be accessed
from any Internet enabled application or user, thus
from almost anywhere. The Internet of Things
is often seen as the catalyst of more intelligent
environments, where applications will use Things
to perform actions and sense on our behalf, with
little human intervention.

As the number of connected Things will grow,
making sense of what is accessible and can be done
and how they relate to one another will be harder
and harder. For taking good and qualified decisions,
applications will not only need to know how to
access the sensors and actuators, but also where

Emmanuel Frécon is with the Interactive Collaborative
Environments Laboratory, Swedish Institute of Computer
Science, Box 1263, SE-16429 Kista, Sweden, e-mail: em-
manuel@sics.se.

these are located, the people in their vicinity, their
immediate neighbouring Things, etc. The context
manager is a modular Tcl[1] web service that
attempts to provide this contextual information to
applications, i.e. the extra logical layer empowering
applications with the overlaying of dynamic sensor
data on top of locational data of more static na-
ture. While the context manager primarily targets
home environments, it can also be used in other
environments. The context manager relies on simple
PubSub[2] and pull mechanisms to account for the
low resources available on sensors. It also offers a
streaming interface based on WebSockets for push
and pull of sensor and actuator data.

II. RELATED WORK

There starts to exist a number of cloud-based
services that target the IoT (Internet of Things) and
provide APIs to store and later retrieve data that
has been sent for storage into the cloud. Probably
the most well-known of these services is COSM1

(formerly known as pachube). But there are a
number of other services such as sen.se2, nimbits3

or thingspeak4 to mention a few. Common to all
those services is a web-based API that is easily
integrated directly from sensor platforms, providing
tiny (connected) sensors or gateways off-site stor-
age. The same API can be used to retrieve data from

1Cosm is available at https://www.cosm.com/ and is open
for new account registration.

2Sen.se is available at http://open.sen.se/ and is open for beta
testing by the way of invitations only.

3Nimbits is available at http://www.nimbits.com/ and is open
for new account registration. Nimbits also touts private cloud
solutions by allowing the integration of the nimbits solution
within existing architectures.

4Thingspeak is available at https://www.thingspeak.com/ and
is open for new account registration

mailto:emmanuel@sics.se
mailto:emmanuel@sics.se
https://www.cosm.com/
http://open.sen.se/
http://www.nimbits.com/
https://www.thingspeak.com/

the web services, thus opening up for data-mining
activities if ever necessary. Common to those APIs
is the use of REST[3] and JSON[4] for retrieving
and posting data from and to the cloud. This
is to ease integration from low-power consumer-
oriented hardware platforms such as arduino[5] or
gadgeteer[6].

In addition to providing an ”infinite” data stor-
age for sensors and actuators, the power of these
services lies in the community of people around
them and the ability to integrate values from several
sources to reason in improved and more sensible
ways. In short, these services provide a whole
ecosystem of devices, applications and people, by
being able to pinpoint sensors using location ser-
vices and providing ways to get notified whenever
their value change. From the point of view of a
house and household, sen.se seeks to take a step
further by allowing users to build user interfaces to
control their houses. Sen.se provides ways for its
users to visually create applications by connecting
sensors to web-side logic boxes and finally present
the resulting “computation” through its dashboard,
a web-based UI combining output of values with
input of commands to be utterly received by actu-
ators.

However, these services fail to provide more
information about the context within which all these
sensors and actuators are being placed, especially
when it comes to smaller scale installations such as
a house or a building. In order to be able to make
energy-smart decisions, leading to smart actuation
of the devices that are accessible to them, appli-
cations need to know about inhabitants, relative
locations of sensors, external conditions, etc. So far,
the merging of the Semantic Web[7] with sensor
networks, also known as the Sensor Web or the
Sensor Internet [8][9][10][11] has focused on the
creation of specifications for different functional-
ities related to the management of sensor-based
data (observations, measurements, sensor network
descriptions, transducers, data streaming, etc.), and
for the different types of services that may handle
these data sources (planning, alert, observation and
measurement collection and management, etc.). The

cost of providing network abstraction and ontolo-
gies often comes with increased complexity. So
while these middlewares effectively provides ways
to reason about devices and actuators at a high level,
they seldom solve the problem of providing the
general context while still lowering the threshold
for regular users.

III. GOALS

The context manager is aimed at being the nav of
the house, i.e. the place where all relevant sensors
report (directly or indirectly) their data, sometimes
in aggregated form, but also where all applications
will dig for information that is relevant to them,
i.e. both values from some sensors, but also their
location or information about their surroundings.
Being such a nav, the context manager is designed
to be placed and hosted in a home gateway, i.e. a
“number crunching” appliance that provides com-
puting power and intelligence at a lower price in
a central place5. In this context, houses are taken
in their larger forms and can be entire buildings
if necessary, and the design should open up for
federations of context managers to adapt to the
needs and privacy concerns of both building owners
and flat owners (or inhabitants).

The main goal of the context manager is to
provide dynamic ways to model the context, e.g. a
house and all its online devices, be them sensors or
actuators. The dynamism of the context is essential
at different levels: first it is important to be able
to host new devices as they are installed in the
house, secondly it is important to be able to model
the context in various ways because all houses are
far from being the same and because there might
be cultural differences between location that have
an impact on the context itself. Consequently, the
context manager takes an object-oriented approach,
where the possible content of the context, i.e. the
objects themselves is driven and controlled by a
simple schema, i.e. a model of what objects can
be made available in the context, but also a model

5The current implementation of the context manager has
been verified to be fully functional on the open source Beagle-
Board xM, an ARM A8 development board.

of their relations. The use of schemas could intro-
duce complexity to the conceptual approach, so the
context manager features a simplified schema with
few rules and in a human-readable format. Several
schemas can be aggregated, allowing for experts
to provide base schemas, perhaps somewhat more
complex in their form while still providing power
to the end users and the inhabitants, so as to adapt
to the specific needs of a household, a building or
a custom-made online sensor.

The context manager seeks to provide an open
API that follows the current trends within Web-
based services and development. Web asynchronous
communication is slowly moving from SOAP[12]
and XML[13] standards into REST and JSON for a
number of reasons. One of the advantages of these
new standards are their ease of reading, i.e. core
communication can be tested directly in the web
browser, and the results from a query are easily
read in a textual format that is much more compact
than XML. It is out of the scope of this document
to advocate for either one or the other standard, but
since the context manager aims at providing an easy
interface to application programmers, REST/JSON
are more suitable to the task. Apart from allowing
programmers to test queries against an existing
instance, both the format of the queries and of the
result are in general less cumbersome to parse, thus
easily integrated into existing code and onto low-
power platforms such as mobile phones or even
sensor platforms.

IV. DESIGN

A. Schema and Model

In order to cope with different sorts of environ-
ments and to account for the cultural differences
between housings in various regions of the world,
the context manager is based on a dynamic schema
that directs the content of the objects that will
be instantiated to describe a house or any other
environment. The schema can include remote (web)
schemas, thus providing ways for experts and/or
interested users to collaborate, but also providing
for the inclusion of new classes of objects that
will support newly created sensors. In order to

easily be accessible to technically inclined users,
the schema supports few paradigms: single inher-
itance, a few base types (Boolean, Integer,
Float, String, Timestamp[14] and arrays)
and constraints. Constraints describe rules to which
field values should comply to, providing minimum
and maximum bounds or constraining only a few
possible values. Constraints offer a way to model
physical units and laws: for example, temperature
can be expressed in Celsius and is always greater
than -274.15. The syntax for the schema minimises
idioms and is designed to be human-readable with
lesser effort.

Objects modeling the context are instantiated
from the schema, and sensors and/or external ser-
vices will update the fields of these objects as new
values are measured, made available or acquired.
Initial instantiation will provide decent default val-
ues for all fields and subsequent updates will always
be checked against the possible constraints that
direct the content of one or several fields. The
context manager provides a number of techniques
for remote services to be notified when objects and
their contained fields are modified as time passes.

B. Data Flow and Storage

The context manager reads its schema (and in-
cluded schemas) during initialisation, subsequently
reading a file describing the initial context. Typi-
cally, the initial context will be composed of more
or less transient information such as the rooms com-
posing a house together with their interconnections,
but also an initial instantiation of the objects that
will be involved in the dynamic representation of
devices, sensors, actuators and inhabitants, together
with their spatial relations. Modification of fields
in objects, and queries for the inter-relationships is
supported by a REST/JSON inspired API.

The API supports (basic) authentication and
HTTPS[15] encryption if necessary, because of
their widespread use and their ability to scale down
to the few resources available on sensors. As times
goes by, all values set are automatically mirrored to
a noSQL database (cluster) implemented on top of
REDIS[16]. The API supports access to historical

data. It also enables setting values in the future,
thus supporting prediction. Whenever the scheduled
time is reached, a value will automatically be set
to the one that had been set in the future. The
API also permits setting values in the past for
the automated storage of historical data. So-called
triggers implement a PubSub mechanism, allowing
remote Web services, applications and sensors to
be notified whenever value(s) in objects change
upon given conditions. Finally, WebSockets[17] can
be kept opened against particular objects, offering
both a way to stream updates from the object as
time passes, but also to update its fields whenever
needed.

C. Extensibility through Conduits

The context manager is extensible through the
concept of “conduits”. Conduits are logical entities
connected to external web services that will direct
data into or from the context depending on a num-
ber of conditions. Typically, conduits will perform
some transformation on the data to or from the ex-
ternal web service, while also retaining data that is
specific to the remote service, e.g. login credentials,
authorisation details, session information, etc. At
present, there are conduits for Twitter, for import
and export of data to the COSM cloud service, to
remote context managers, to nearby UPnP objects
and services and for the control of objects’ values
according to Google calendar bookings. Conduits
are loaded as a set of plugins during the initialisa-
tion phase, they access the context manager through
its modular internal API.

V. IMPLEMENTATION

A. Functionality

The context manager roughly provides the fol-
lowing set of functionality:

• It takes a schema and a model to provide a
logical context of a building. This context can
be accessed and modified using REST/JSON
calls for maximised flexibility and integration.
This means that most operations to and from

Figure 1. The API of the context manager provides
REST/JSON entry points both to query the state of the context,
but also to modify it. In addition, it supports external known
and generic Web Services, while being able to predict and
automatically store historical data through a connected noSQL
database.

the context can actually be made (tested?) from
the comfort of any Web browser6.

• The context manager provides a number of
ground operations to:

– Get the content of whole or part of the
context, including the values of the fields
of the instantiated objects and including
values from the past, whenever they are
accessible.

– Modify values of objects that already are
instantiated, which will be an operation
that is often used when the value of a
sensor changes.

– Provides means to search for objects by
the content of their field, the name of their
class, etc.

– Provides means to understand arrays as a
technique to organise (part of) the model
in a hierarchy and to find specific objects
within such a hierarchy.

– Provides means to trigger external web
services whenever (part of) an object has
changed, i.e. to mediate the content of the
object to remote Web Services. Triggers
offer enough flexibility so as to be able
to:

6There are several JSON formatting extensions for most
of the Web browsers. Such an extension will be necessary
since the context manager minimises output by removing all
unnecessary indentation or line breaks.

∗ Restrict which field of the object are
under watch and how to mediate their
value to the remote service, i.e. as part
of the URL, in the body of the posted
data, etc.

∗ Specify in details the headers, the
MIME type and the method of the
HTTP request (GET, POST, PUT,
DELETE).

∗ Control the maximum frequency of this
mediation to avoid flooding the net-
work.

∗ Mediate only under certain conditions,
expressed as a mathematical expression
involving any of the fields of the object
(based on the Tcl expr command).

∗ Control if mediation should happen ev-
ery time the value is updated, or only
if it has changed since last time (the
default).

– Provides means to stream the flow of
changes to remote clients via WebSock-
ets, expressed as JSON representations
of the object. This interface provides ap-
proximately the same level of control as
the triggers described above7. WebSockets
have two advantages:
∗ They easily pass through firewalls and

multi-level NAT hierarchies, thus mak-
ing sure that even clients at the edges of
the network can be notified of changes.

∗ Once the connection has been estab-
lished, packets containing object data
are kept to a minimal (with almost no
additional overhead or verbose header),
which makes them suitable for trans-
mission across WSN (wireless sensor
networks).

– Automatically saves versions of objects to
a database for later retrieval. Given the
unstructured nature of the context, noSQL

7All control that is only relevant to how the HTTP request
to the external Web service should be made are left aside
since this is not relevant in the case of WebSockets, i.e. in
a framework that keeps the connection opened at all time.

databases are a perfect match, especially
since they form the base of a number of
data-mining techniques.

• The context manager offers a pluggable ar-
chitecture through the concept of “conduits”,
i.e. logical entities connected to external web
services that will direct data to or from the
model depending on a number of conditions.
Typically, conduits will perform some trans-
formation on the data to or from the external
web service, while also retaining data that
is specific to the remote service, e.g. login
credentials, authorisation details, session infor-
mation, etc. There are a number of conduits
already available:

– The COSM conduit is able to pull and
push data from the COSM Cloud service.
The conduit supports both the access of
non-public feeds via an API key and
to public feeds, polling their content at
the necessary frequency whenever needed.
Data can be transformed on the way to
and from the feeds, matching feed names
against fields names in the context man-
ager, but also performing any mathemat-
ical operation supported by the expr
command at copy time.

– The remote context conduit is able to
pull and push data from remote context
managers, using triggers at the remote
managers to get notified of changes. The
conduit can be forced to poll for data
instead to ease firewall and NAT traver-
sal. As for the COSM conduit, data can
be transformed on the way to and from
the remote context. Being able to incor-
porate (parts of) remote context into a
local context opens up for the creation
of federations of context, and the ability
to (re)use the sensors of your neighbours
when taking decisions.

– The local context conduit is a simplifi-
cation of the remote conduit that only
acts between local objects. It allows for
the transfer (and transformation) of fields

values between different objects of the
context, whenever some conditions are
met.

– The Google calendar conduit binds the
events of a given calendar to a Boolean
that will turn on when there is a booking
in the calendar, and off when there is no
booking. Combined to local conduits and
actuation (see section VII-B2), this can be
used to specify when some devices should
be turned on or off.

– The UPnP[18] conduit is able to pull
and push data from remote UPnP ser-
vices. The conduit is built on top of an
SSDP discovery mechanism, thus being
able to bind objects of the context man-
ager to a service that has a given (discov-
ered) name, or to a service that is at a
given known location. While the conduit
has been designed to bridge the context
manager to objects within the LinkSmart
middleware[11], it makes a number of
assumptions to be able to be used in
more generic cases. Similarly to the other
conduits, the UPnP conduit is able to push
and pull data to and from the known state
variable of a UPnP server. For this to work
in a generic way, the conduit assumes
that the service has methods which name
contains the name of the state variable and
that contain the keywords “get” or “set”
to get or set the content of the variable.

B. Security Mechanisms
There are two intertwined security mechanisms

that will control the access to the context manager.
First of all, the context manager is able to run
on top of HTTPS[15] thus providing encryption
of both requests and their results, so as to avoid
eavesdropping from external parties. HTTPS was
chosen because it is a well-established protocol that
is widely supported across languages and platforms.
The context manager supports both self-signed and
authorised certificates.

Secondly, all web accesses can be controlled by a
user name and password that will be mediated to the

context manager using Basic Authentication[19].
Control should occur at the (virtual) directory level
so as to provide for finer grained access restrictions
if necessary. The goal is to refrain some users from,
for example, setting the values of some objects of
the context. Again, basic authentication was chosen
because it is widely supported across languages and
platforms. Basic Authentication sends the password
from the client to the server unencrypted, however
it should be used in conjunction with HTTPS.

There might be cases where HTTPS encryption
is too heavy for the client platform in terms of
computing resources, for example if sensors send
directly their data to the context and/or need to
reason about other sensors in their vicinity to take
decisions. For those cases, the context manager is
able to provide regular HTTP access. This HTTP
access should be secured by a set of firewalling
rules that will prevent access to the context manager
from any remote client except the ones that need
to access the manager for the reasons detailed
above. Since these cases are most likely to occur
within home networks and since most current home
installations and Internet accesses are based on
NAT techniques, the security risks introduced by
unencrypted access in those cases are deemed to
be low. In those cases, wires or proximity ensures
physical security. This security relies however on
proper configuration of the Internet access and the
different firewalls involved.

C. Startup and Initialisation

On startup, the context manager will perform the
following operations in sequence:

1) The context manager will start a web server
with the proper credentials (see V-B) and
proper encryption settings. Alternatively, the
context manager can be embedded in an
existing server framework if more suitable.

2) The web server will expose the schema and
model that will define the context of the
building or the house that the manager is
controlling and modeling.

3) It will read the schema (see VI-A) that will
describe what classes of objects are allowed

to appear in the context. This includes possi-
ble access to remote schemas that might be
included from the main schema. Reading of
the main schema might be through accessing
the internal web service if necessary8.

4) It will then read the model (see VI-B) that
describes the particular building that it is
modeling and controlling. All constraints im-
plied by the schema that has just been read
will be applied as the model is being read.

5) All objects instantiated as part of the model
are bound to the noSQL engine so that further
write operations will automatically lead to
new versions of the object being stored and
so that later get operations will be able to get
older data, whenever possible.

6) It will initialise all conduits that are acces-
sible to this context manager. Conduits are
conceptually separated from the remaining of
the code and are plugins communicating with
the remaining of the context manager through
a tiny and well-defined (internal) API.

7) It will read an initial “pairing” state (see
VI-C) that is used to initialise a number of
conduits and to bind a number of objects
to remote services. Pairing is explained later
and mostly a helper functionality that aims
at reinitialising the context manager every
time that it starts and reaching a similar
functioning state.

VI. FILE INTERFACES

Instead of providing an entire specification of
the file formats that are understood by the context
manager, this section focuses on providing real-life
(shortened) examples. These examples are anno-
tated and explained, bringing further insights to the
internal of the context manager and all the facilities
that it offers.

8Actually, reading the main schema via the web is encour-
aged since this will enforce UUIDs that remain constant over
time and are bound to the specific installation. Preferably,
a hostname will be involved in the main URL to bind the
instantiated objects, classes and their UUIDs to a specific and
logical place.

A. Schema

As highlighted before, the context manager pro-
vides techniques to specify the schema that will be
used to describe the context itself. A key require-
ment to the provision of this schema is that it should
be easily approachable not only by IT specialists,
but also by less-knowledgeable people. To this end
the schema brings in object-orientation concepts but
simplifies them to their outermost. For example, it
provides simple inheritance and mixes both object
field specifications and inheritance9. The schema
does not provide concepts such as private variables
or similar, once again for the sake of simplification.

Below is a cut-down example of a schema,
providing a flavour of how a schema looks and
feels like. Roughly, this example schema divides
the space into a number of possible floors and
rooms within a building, and enables each part of
the space to carry a number of devices (inhabitants
are left aside on purpose). The example sports a
single type of device, namely a thermometer, which
demonstrates the (definition and) use of constraints
to provide for a richer expression of units and
properties of the physical world. The constraint
defines temperature (in Celsius) as a floating point
value that always is above the 0K.

Space {

name String
contains Space[]
devices Device[]
Outside {
}
Building {

address Address
pos Coordinate

}
Apartment {

number Integer

}
Floor {

above Floor
below Floor

}
Room {

9While mixing class hierarchy and description in the same
flow might surprise, this solution was chosen for the sake of
simplicity. It has the advantage of presenting all data relevant
to a given schema at a glance.

Kitchen {
}
Bedroom {
}
Office {
}
Bathroom {
}

}

}
Address {

street String
streetNumber Integer
areaCode Integer
city String
country String

}
Coordinate {

latitude Float
longitude Float

}
Temperature:Float {

intervals {[-273.15,[}
unit "celsius"

}
Device {

name String
SensorDevice {

Weather {

Thermometer {

value Temperature

}

}

}

}

To simplify the approach by non-technical experts,
no forward declaration of classes or constraints is
necessary. All new “types” that are discovered will
be understood as (empty) classes as a start and
converted when their real definition occurs. While
this has the drawback of more complicated parsing
and the possibility of duplicates or of unknown state
— what to do when a class with a given name is
then specified as a constraint under the same name
— these problems are considered minor compared
to the necessity to forward declare classes or con-
straints before being able to use them.

B. Model

The schema only specifies and constraints the
types of the objects that should be placed in a
model. While the schema is essential to the context
manager since it provides guidelines to what can be
instantiated within the model, achieving a concep-
tual model of a home and all its online devices is
the ultimate goal of the context manager. To this
end, the context manager provides a file format
that is easily approachable, allowing people to
quickly model their own house. At later stages, and
depending on the success of the approach, graphical
tools would certainly provide help in specifying the
final model, perhaps based on existing drawings
(blueprints or CAD).

Below is an extract of a model, based on the ex-
ample schema above. The purpose of this example
is to set the scene and provide a flavour for how
model files could look like. Complete models tend
to be more extensive, so the example below is not
complete.

Outside pHataren1 {

name "PositivHataren1"
contains {myHouse}
devices {

outsideTemp

}

}
Address aSoderman10 {

street "August Södermansväg"
streetNumber 10
areaCode 12938
city "Hägersten"
country "Sweden"

}
Approximate center of our lot.
Coordinate myPosition {

latitude 59.299428
longitude 17.970209

}
The house contains three floors,
which will contain the rooms.
Building myHouse {

name "House Frecon-Waller"
address aSoderman10
pos myPosition
contains {

ground cellar top

}

}

The different floors in the house,
here only one for the sake of
concision.
Floor ground {

name "Ground Floor"
contains {

hall kitchen diningRoom
livingRoom bath vilma

}
above cellar
below top

}
#######
Devices
Thermometer outsideTemp {

name "Temp. sensor outside"

}

The model uses the schema to control the content
of objects that are created within the model. Every
instance of a class is referenced using an iden-
tifier. Using techniques similar to those used for
the schema, objects can be referenced before they
are actually used, but the model provides enough
feedback whenever the data that is specified does
not correspond to the schema that controls what can
be specified.

In the resulting model, both instantiated objects
within the model and classes are identified by a
UUID[20]. The UUID is of type 3 or 5 and built
using a concatenation of the URL to the model (or
to the schema), the class name and (when relevant)
the reference to the object. This ensures that, even
upon restarts, objects and classes will keep their
UUIDs as long as the file structure, content and
location has not changed.

C. Pairing

In order to be able to restart from a similar state
at all times, the context manager is able to read
from a pairing configuration file once the schema
and the model have been read. The purpose of this
file is to establish all the necessary conduit con-
nections to well-known services. Pairing is made
at the conduit level, thus at the REST/JSON level.
In other words, when initialising the pairing, the
context manager behaves as if it was an external
client to itself. This is to be able to support new

conduits in the future and to fail nicely if some
conduit initialisation did not succeed properly.

Below is an annotated example file showing
how pairing can be initialised at start, the syn-
tax provides some visual markup to highlight the
source and destination objects and uses a number
of heuristics to detect which conduit to use for data
migration. An integer is understood as a COSM
feed, a UUID as an object from the local context
manager, a URL ending with a UUID as an object
in a remote context manager, a URN starting with
gcal: as a Google calendar and a URN starting
with UPnP: as a UPnP service. The “arrow” of the
markup can specify and/or force polling frequency
and indentation is used to further specify how the
value of fields are carried to the remote entity.

Map my heat pump to the COSM feed with
identifier 53880. Non-matching
fields/datastream names will be ignored.
API key is picked up from the configuration
of the context manager.
55851044-b290-56a5-3c88-d64ffbfa75e9 -> 53880
Another COSM mapping, making sure the COSM
datastream “inside” is mapped to 4 times the
value of the field “value” in the context
object,
20ecdbe4-8459-5636-6146-71c618badc71 -> 53882

%inside% = 4.0*%value%

Reverse COSM mapping, datastream called “2”
in feed 55180 at COSM is brought the field
“value” in the context object.
55180 --> 929494fb-84e1-50cb-beea-c04aecda088a

%value% = %2%

Pick up the weather station of somebody else,
do some field names / datastream mappings and
force polling to occur every 180 seconds.
45036 -180-> 684c4e19-c4ed-5861-f127-59109a41bb56

%temperature% = %OutsideTemprature%
%pressure% = %ABSPressure%
%humidity% = %OutsideHumidity%
%rain% = %Rain%
%windDirection% = %WindDir%
%windSpeed% = %WindSpeed%

Send status of context object to the UPnP
service named "Dev"
5d9a66e5-9738-598c-d0b0-e707eb0e2a36 -> UPnP:Dev

VII. APPLICATIONS AND EXAMPLES

This work has been carried out within the frame-
work of a European project looking into energy
optimisation. The project uses traditional home
automation in order to attain energy savings while
still offering the same level of comfort. The project

also seeks to offer “soft” actuation mechanisms, i.e.
providing enough (summarised) information about
some of the decisions taken by devices in the
home to let inhabitants take the final necessary
steps. Ambient displays are used to carry out this
type of information in a form that is aesthetically
acceptable. A number of prototype pilot houses
have been equipped with sensors and actuators of
various forms in order to gather data for future
data-mining activities, but also to experiment with
how smart actuation can turn into energy savings or
reduction of CO2 emissions. This section describes
one of these prototype installations, located in the
outskirts of Stockholm. There are several other
installations, featuring a slightly different feature
set of software and hardware so as to adapt to the
particularities of these households: type of heating,
electricity meter, etc.

A. Heating and (Inner) Climate

1) Heat Pump Analysis (and Control): Live
status from a heat pump (IVT Greenline HT+)
is picked up via its service serial interface using
software from a small Swedish company called
Husdata10. This is connected to a PC running
Windows sitting on top of the pipe system in the
direct vicinity of the heat pump. The default settings
within StatLink, the software provided by Husdata
as part of their offering have been slightly modify
to increase the number of sensors being read and to
regularly dump sensor data to a particular location
on the PC, a location that is served by a tiny
web server11. Raw dump data is (remotely) polled
by a Tcl script at regular intervals and pushed to
the context manager after naming transformations.
Within the context manager, a conduit forwards

10Husdata http://www.husdata.se/ offers a number of hard-
ware modules to connect a computer to a range of heat pump
commonly found in Sweden, from several manufacturers.

11The current installation relies on mongoose, available at
https://github.com/valenok/mongoose.

acquired data to two COSM feeds12.

Figure 2. Husdata provides a hardware module to connect
to the service serial interface of the heat pump, together with
Windows software for analysing the decisions taken by the
pump over time.

Figure 3. A Windows PC collects data from the heat pump,
it is placed on top of a number of copper pipes in direct
connection to the pump. The module with an antenna is the
root node of the WSN network that collects temperature and
main electricity data (see sections VII-A2 and VII-B1).

The current solution only provides gathering of
heat pump sensor data. This has been immensely
valuable since we can now perform long-term anal-
ysis of the behaviour of the heat pump using data-
mining techniques, so as to be able to detect with

12Converted pump data is pushed to https://cosm.com/feeds/
53880, temperature is pushed to one of the datastreams of
https://cosm.com/feeds/53882, additionally raw data, as taken
directly from the husdata software is pushed to https://cosm.
com/feeds/52002. This is being used mainly for debugging
purposes and for detecting possible failures in the context
manager and in the surveillance PC network connection.

http://www.husdata.se/
https://github.com/valenok/mongoose
https://cosm.com/feeds/53880
https://cosm.com/feeds/53880
https://cosm.com/feeds/53882
https://cosm.com/feeds/52002
https://cosm.com/feeds/52002

this given household will need warm water. It opens
up for predicting when it will use warm water in the
future, so as to shutdown warm water production
during peak hours and start again at off-hours, be-
fore warm water is needed again. However, taking
these last steps implies being able to control the
internal logic of the heat pump, using the serial pro-
tocol described at http://rago600.sourceforge.net/.

2) Inner Temperature: A TinyNode[21] board
running Contiki[22] and carrying a temperature
sensor is hidden behind a photo frame. Measure-
ments are sent along a mesh network at regular
intervals, captured via the pump computer and sent
on via UDP to a Tcl script. The script automatically
pushes data into an object of the context manager,
and further to COSM13 via a conduit.

Figure 4. The TinyNode measuring temperature hides itself
behind a photo frame in the living room, so as to break the
aesthetics as little as possible. It has been slightly pushed aside
for the sake of documentation and picture taking.

This particular heat pump installation only con-
tains an outside temperature sensor, with which
all decisions are taken when it comes to heating.
The pump is able to host an inner temperature
sensor (cabled) to take better decisions about when

13Temperature is pushed to one of the feeds https://cosm.
com/feeds/53882 that already is used to publish the outside
temperature acquired via the heat pump, though to another
datastream.

and when not to generate heat. Combined with the
planned implementation of serial connection and
control of the pump, the provision of a wireless
inner sensor could provide for better inner climate
without the wiring that is required by regular in-
stallations.

3) Weather: A specially written Tcl script can
be used to update (in the future) an object of the
context manager to reflect the weather forecast for
a given location. The script uses the REST/JSON
API from the Weather Underground14 to access an
hourly forecast for the coming 10 days. As updates
are made in the future for those specific times, they
are automatically stored in the noSQL cluster and
set back as the “current” value as time passes. The
script can be run once in a while or continuously.
It will thus keep updating the object with an up-to-
date weather forecast, allowing other applications
using the context manager to reason about the
current and future weather situation. For example,
an application that would control heating could
make the decision to accept temporary temperature
drops if the outside temperature is only going to
decrease for a few hours/days. The object that the
script sends its data share the same model as a
weather station, thus implementing a virtual private
weather station in combination with the script.

B. Electricity and Energy Consumption

1) Total Measurement: The past decade has seen
the progressive replacement of all electricity meters
in Sweden in favours of so-called smart meters.
These meters are able to report the hourly electricity
consumption to the utility company as time passes,
so as to bed for refined billing and better dimen-
sioning of the grid. Pulses from the electricity meter
are captured by another TinyNode sensor running
Contiki, manufactured by CRL Sweden. Data is
pushed out of the sensor network to the same Tcl

14Documentation for the API is available at http://www.
wunderground.com/weather/api/. There are numerous other
services offering the same type of data, Weather Underground
was chosen because of its ability to chunk several questions
into one request, but also because it is also uses ideas from the
Internet of Things: forecast are improved using the data from
private weather stations, whenever possible.

http://rago600.sourceforge.net/
https://cosm.com/feeds/53882
https://cosm.com/feeds/53882
http://www.wunderground.com/weather/api/
http://www.wunderground.com/weather/api/

bridge as in section VII-A2. The bridge forwards
to another object of the context manager, and thus
automatically to COSM15. This publishes an history
of the instantaneous power used by the household
over time. As electricity is one of these hidden
cost that is seldom understood, an ambient display
is at the planning stage; a display that will both
visualise how much electricity has been used so
far, but also provides feedback to the instantaneous
variations, thus to power, required by new devices
being switched on (or off).

Figure 5. All electricity meters installed in Sweden host a
LED (IR or visible) that flashes a number of time for each
number of Watts used. The pulse metering node, sitting on top
of the meter itself, continuously count these pulses and reports
the total count for the latest period via the WSN network.

2) Measurement and Control at the Device
Level: PlugWise are smart plugs manufactured
by a Dutch company. They form a ZigBee mesh
radio network, allowing access and control from a
computer to which a specific USB key is connected.
They offer three key features.

1) They host a relay, meaning that they are able
to turn on or off all the devices connected to
the plug and this from a distance. The state
of the physical relay can be queried at any
time.

2) They measure the instantaneous power being
used by all devices connected to the plug, a
value that can be requested from a distance.

15The COSM feed https://cosm.com/feeds/60040 is updated
at two minutes interval with the current power consumption of
the whole house

3) They keep an hourly log of the electricity
consumption related to the plug. As this log
is kept in memory in the plug itself, historical
data for the plug can be accessed from a
distance at later time if necessary. The log
rotates with time but keeps a few days worth
of hourly data.

A Tcl script couples one or several objects from
the context manager to as many smart plugs as
there are objects. At the core of the Tcl bridge is a
wrapper library around the command line interface
of one[23] of the open source libraries created to
access the PlugWise hardware and network. The
bridging script connects to object representations
of the plugs in the context manager using the
WebSocket API16 and pushes all information, in-
cluding relay state and historical data, gathered
from the plug. The state of the relay is represented
by a Boolean and turning the field on and off
in the context manager will be propagated to the
physical plug, allowing to turn on and off connected
electrical devices.

Figure 6. The form factor of the smart plugs from PlugWise
(white plugs on the picture) make them easy to install across
the house in order to measure the consumption of particular
devices, but also to automatically turn on and off (sets of)
devices based on heuristic such as the time of the day, the
day of the week, or more advanced schemes in response to
Demand/Response requirements from the grid.

16In order to be able to resist to network equipment that
restrict the use of WebSockets, the plugwise bridge is also able
to poll at regular intervals for the desired state of the physical
relay.

https://cosm.com/feeds/60040

3) Spot Prices: The Swedish electricity market
has been deregulated for a number of years and
prices vary on an hourly basis, dividing Sweden
in four different geographical regions. Nord Pool
Spot runs the power market in Sweden and offers
day-ahead prices to its customers. A Tcl script
continuously acquire the prices17 for all regions
and updates one or several objects of the context
to reflect the current price at that location.

C. Ambient Interfaces

An off-the-shelf multi-coloured lamp is put under
the control of a REST-based server written in
Tcl. Controlling of the lamp is via the IR from
Dangerous Prototypes18. At present and for time
reason, the solution only works on Windows, on top
of WinLIRC. The lamp can take a wide number of
colours and the REST interface accepts any RGB
codes, approximating to the closest available colour
on the lamp.

Figure 7. The design of the lamp makes it an acceptable
display for home “events” in a number of cases.

A second Tcl REST server offers a Web interface
to “tune” the lamp to various data sources present
in the context manager. The user interface is kept

17Prices are scraped from http://www.nordpoolspot.com/ for
historical reasons.

18The IR toy is a set of open source hardware and soft-
ware available at http://dangerousprototypes.com/docs/USB_
IR_Toy_v2 to record and (re)play the IR codes of most
infrared-based remote controls.

to a bare minimum, but is easily accessible from
both computers and mobile devices, which is the
expected future scenario. Using colours, the lamp
can visualise the live status of the heat pump (from
green when not working to purple when using
external heat), the temperature inside or outside,
the price of the electricity on Spot, etc.

Figure 8. In the figure above, the lamp is tuned to the outside
temperature and the user interface is shown on nearby TV for
demo purposes. The UI uses the COSM connection to display
relevant historical graphs.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented the context manager,
a central hub designed both to provide contextual
data to IoT applications and a storage for historical,
present and future sensor and actuator data. The
context manager is designed to lower the learning
curve, letting less technically inclined people model
and reason about their smart homes. Concepts such
as pairing, conduits and triggers lean themselves
easily to be controlled and specified via user in-
terfaces rather than via the file formats that have
been summarised in this document. As such, these
concepts already contain parts of the logic that
would control the flow of data between different
objects, combined to both actuation and visualisa-
tion through external services. Possible extensions
would consist in looking into visual programming
efforts such as App Inventor[24] and ways to in-
corporate some of these ideas into the IoT domain.
Already, colleagues have started to work on the

http://www.nordpoolspot.com/
http://dangerousprototypes.com/docs/USB_IR_Toy_v2
http://dangerousprototypes.com/docs/USB_IR_Toy_v2

building blocks of an “appification” of the home,
i.e. the installations of “apps” that can control parts
of your homes to attain some energy savings, while
providing a (mobile) user interface to input settings
and refine controlling. For this “appification” to
take place, applications will need to be able to
reason about the context in order to adapt to the
specificities of as many homes as possible. They
cannot rely on users or hard-coded objects, instead
the location and search facilities of the context
manager will be key to reasoning about the context
and answers questions such as “give me all the
lamp sources in that room” or “Have all inhabitants
left home now?”. In its current implementation, the
context manager is starting to be able to provide an
answer to this type of questions.

APPENDIX A
INTEGRATING WSN SENSORS AND ACTUATORS

Apart from the TinyNode deployment that has
been described in section VII, additional Tcl scripts
have been written in order to interface with IPv6-
based WSN, one of the areas where the OS
Contiki[22] is widely used. In meshing WSN, it is
essential to restrict the size and number of packets
to a strict minimum in order to keep power require-
ments low. The current implementation of these
scripts relies on the HTTP capabilities of the motes.
HTTP leads to sizable headers and the necessity
to keep the TCP state across the network. Future
directions will look into UDP19 and WebSockets.

Scripts bridging motes to the context manager
will receive or poll for mote data and push this
data as updates to the field of one or several
objects in the context manager. The simplest script
will regularly poll for data at given motes with a
given frequency. However, the more complex script
is inspired by techniques initiated by CoAP[26].
It combines a UDP and HTTP servers, in order
to both support regular HTTP POST and GET
operations, but also to entertain WebSockets con-
nections. On startup, the script contacts all relevant

19Problems with the current UDP implementations in Tcl 8.6
(and in combination with IPv6) have unfortunately put part of
the development on hold.

Figure 9. Two of the supported motes. To the left is a mote
from Tyndall[25] that sports a stackable and pluggable interface
for various sorts of sensors (temperature and humidity on the
picture). To the right is a commercial mote from Flexibility
(see http://www.flexibity.com/) implementing a thermometer,
hygrometer and barometer.

motes and subscribes itself (the proper root/details
to the servers that it implements), together with
a frequency for reception of data. Consequently,
motes will, whenever needed push data to the script,
which will forward it further to the appropriate
objects of the context manager, depending on its
configuration.

ACKNOWLEDGMENTS

Most of the work has been sponsored by the Eu-
ropean ARTEMIS project me3gas, with valuable in-
put from M. Westbergh (CRL Sweden), S. Duquen-
noy (SICS), J. Eriksson (SICS), P. Kool (CNet), P.
Hansson(SICS) and L. Moore (Tyndall). Most of
the code has been opened source at the following
project location: http://code.google.com/p/efr-tools/

REFERENCES

[1] B. Welch, K. Jones, and J. Hobbs, Practical Program-
ming in Tcl and Tk. Prentice Hall, 20 June 2003.

[2] K. P. Birman and T. A. Joseph, “Exploiting virtual
synchrony in distributed systems,” in ACM Symposium
on Operating Systems Principles (SOSP’87), pp. 123–
138, 1987.

[3] R. Fielding, Architectural Styles and the Design of
Network-based Software Architectures, ch. 5, pp. 76–106.
2000.

http://www.flexibity.com/
http://code.google.com/p/efr-tools/

[4] D. Crockford, “The application/json Media Type for
JavaScript Object Notation (JSON).” RFC 4627 (Infor-
mational), July 2006.

[5] M. Banzi, Getting Started with Arduino. Make:Books,
O’Reilly Media, Inc., Aug. 2011.

[6] S. Monk, Getting Started with .NET Gadgeteer.
Make:Books, O’Reilly Media Inc., 4 May 2012.

[7] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Scientific American, 17 May 2001.

[8] K. Aberer, M. Hauswirth, and A. Salehi, “A Middleware
For Fast And Flexible Sensor Network Deployment,” in
Proceedings of VLDB’06, pp. 1199–1202, 2006.

[9] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan,
“IrisNet: An Architecture for a Worldwide Sensor Web,”
IEEE Pervasive Computing, vol. 2, pp. 22–33, Oct-Dec
2003.

[10] D. Halvik, G. Schimak, R. Denzer, and B. Stevenot,
“Introduction to SANY (Sensors Anywhere) Integrated
Project,” in Proceedings of ENVIRONINFO, Sept. 2006.

[11] P. Kostelnik, M. Sarnovsk, and K. Furdik, “The Semantic
Middleware for Networked Embedded Systems Applied
in the Internet of Things and Services Domain,” Scalable
Computing: Practice and Experience, vol. 3, no. 12,
pp. 307–315, 2011.

[12] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
H. Frystyk Nielsen, A. Karmarkar, and Y. Lafon,
“SOAP Version 1.2 Part 1: Messaging Framework (Sec-
ond Edition).” W3C Recommendation, 27 Apr. 2007.
http://www.w3.org/TR/soap12/.

[13] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and
F. Yergeau, “Extensible Markup Language (XML) 1.0
(Fifth Edition).” W3C Recommendation, 26 Nov. 2008.
http://www.w3.org/TR/xml/.

[14] G. Klyne and C. Newman, “Date and Time on the
Internet: Timestamps.” RFC 3339 (Proposed Standard),
July 2002.

[15] E. Rescorla, “HTTP Over TLS.” RFC 2818 (Informa-
tional), May 2000. Updated by RFC 5785.

[16] S. Sanfilippo and P. Noordhuis, “Redis,” 2012.
http://redis.io/.

[17] I. Fette and A. Melnikov, “The WebSocket Protocol.”
RFC 6455 (Proposed Standard), Dec. 2011.

[18] A. Presser, L. Farrell, D. Kemp, W. Lupton, S. Tsu-
ruyama, S. Albright, A. Donoho, J. Ritchie, B. Roe,
M. Walker, T. Nixon, C. Evans, H. Rawas, T. Free-
man, J. Park, C. Chan, F. Reynolds, J. Costa-Requena,
Y. Ye, T. McGee, G. Knapen, M. Bodlaender, J. Guidi,
L. Heerink, J. Gildred, A. Messer, Y. Kim, M. Wischy,
A. Fiddian-Green, B. Fairman, J. Tourzan, and J. Fuller,
“UPnP Device Architecture 1.1,” tech. rep., UPnP Forum,
15 Oct. 2008.

[19] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart, “HTTP Authen-
tication: Basic and Digest Access Authentication.” RFC
2617 (Draft Standard), June 1999.

[20] P. Leach, M. Mealling, and R. Salz, “A Universally
Unique IDentifier (UUID) URN Namespace.” RFC 4122
(Proposed Standard), July 2005.

[21] H. Dubois-Ferrière, L. Fabre, R. Meier, and P. Metrailler,
“Tinynode: a comprehensive platform for wireless sensor
network applications,” in Proceedings of the 5th inter-
national conference on Information processing in sensor
networks, IPSN ’06, (New York, NY, USA), pp. 358–365,
ACM, 2006.

[22] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors,” in Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks,
pp. 455–462, 20 Dec. 2004.

[23] S. Petai, “python-plugwise.” Bitbucket Project, 20
Mar. 2011. https://bitbucket.org/hadara/python-
plugwise/wiki/Home.

[24] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App
Inventor. O’Reilly Series, O’Reilly Media, Inc., 15 Apr.
2011.

[25] A. Lynch, K. Aherne, P. Angove, J. Barton, Harte S.,
D. Diamond, and F. Regan, “The Tyndall Mote. Enabling
Wireless Research and Practical Sensor Application De-
velopment.,” in Adjunct Proceedings, Advances in Perva-
sive Computing, pp. 21–26, May 2006.

[26] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Con-
strained Application Protocol (CoAP),” Internet Draft
draft-ietf-core-coap-12, IETF, 1 Oct. 2012.

Dr. Emmanuel Frécon is a senior
researcher at the Swedish Institute of
Computer Science (SICS). He received
his Ph.D. from the IT university of
Gothenburg in 2004. He has (co-
)authored a number of articles in books,
refereed conferences and journals, as
well as edited a book in the field of
computer science. Across the years his

research interests have slowly shifted from collaborative virtual
environments to ubiquitous computing, not forgetting ambient
displays and novel interaction techniques. He strongly believes
in the feedback loop between technology and users.

Dr. Emmanuel Frécon is also an entrepreneur and has co-
founded two companies. He is on leave from his second
company, JoiceCare, where he worked as a system architect
and CTO. JoiceCare sells products for the elderly market:
a SIP-based video telephone and a video-based supervision
system. He also believes that industry and research have a lot
to bring to one another and intends to alternate workplaces as
opportunities present themselves.

	I Introduction
	II Related Work
	III Goals
	IV Design
	IV-A Schema and Model
	IV-B Data Flow and Storage
	IV-C Extensibility through Conduits

	V Implementation
	V-A Functionality
	V-B Security Mechanisms
	V-C Startup and Initialisation

	VI File Interfaces
	VI-A Schema
	VI-B Model
	VI-C Pairing

	VII Applications and Examples
	VII-A Heating and (Inner) Climate
	VII-A1 Heat Pump Analysis (and Control)
	VII-A2 Inner Temperature
	VII-A3 Weather

	VII-B Electricity and Energy Consumption
	VII-B1 Total Measurement
	VII-B2 Measurement and Control at the Device Level
	VII-B3 Spot Prices

	VII-C Ambient Interfaces

	VIII Conclusions and Future Work
	Appendix A: Integrating WSN Sensors and Actuators
	References
	Biographies
	Dr. Emmanuel Frécon

