
Institute of Informatics & Telecommunications – NCSR “Demokritos”

iTcl and TclOO
From the perspective of a simple user

Georgios Petasis

Software and Knowledge Engineering Laboratory,
Institute of Informatics and Telecommunications,
National Centre for Scientific Research “Demokritos”,
Athens, Greece
petasis@iit.demokritos.gr

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

2 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

iTcl and Tcl 8.6

  Assume an application that uses Itcl
–  What happens if it is run under ActiveTcl 8.6 beta?

3 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

  Ok, this happens as iTcl 3.4 is loaded in 8.6
–  Lets compile Tcl from sources (CVS HEAD 27/Jul/10)
–  Tcl now contains a new iTcl implementation (4.0b4)

iTcl and Tcl 8.6

4 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

iTcl and Tcl 8.6

  Ok, iTcl 4.0 has a problem with a variable
–  Lets “correct” this

variable objectsTree {}

method CreatePropertiesPage_Objects {} {

 chain

 catch {
 $objectsTree configure -dropenabled 1 -dragenabled 1 \

 -dropcmd "$this
CreatePropertiesPage_Objects_DropEvent“

 }
};# CreatePropertiesPage_Objects

5 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

iTcl and Tcl 8.6

  iTcl object variables not supported?
–  It seems no…

 but, object naming was internal

  iTcl 4.0 has been actively maintained!
–  Significant progress since last test (6-8 months ago)
–  Does not crash
–  A few “rough edges” remain

  But:
–  Support for iTcl object variables seems missing

  Status of iTcl next generation?
–  Unknown. Not working either in previous tests

6 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

iTcl and Tcl 8.6

Alternatives for running the application?

  Wait until iTcl 4.0 is ready
–  Will it support 3.4 object variable naming?

  Port the code from iTcl to TclOO
–  Hm, 41 classes? ~20.000 lines of code?

 Such a task needs to be automated

  Stick to Tcl 8.5 and iTcl 3.4
  But what happens with open source applications?

7 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

8 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting from iTcl to TclOO (1)

  A medium sized application: Ellogon
–  Open source (LGPL), http://www.ellogon.org
–  Sticking to Tcl 8.5 is not an option
–  But ~480 iTcl classes need to be ported!

 Different “variable” syntax
 The “my” keyword when calling methods
 Different method exporting convention
 …
 Where is TclOO documentation?

9 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting from iTcl to TclOO (2)

  Largely a manual (and time consuming) effort
–  A helper Tcl script to perform “easy” substitutions
–  Several months were needed
–  But, a few portions could not be ported

 TclOO has some limitations
– Or do I have a bad programming style? 

  The task is now largely finished
–  And the helper Tcl script got quite complex

  And what about other applications?
–  How about turning the conversion script into an iTcl

emulator?

10 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting from iTcl to TclOO (3)

  The distance of a script that reformats code from
an emulator is a simple “eval” 

  I have created a small package that emulates iTcl
–  630 lines of code
–  Ignores less essential features (like protection)

 The goal is to get my applications running

11 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting from iTcl to TclOO (4)

  A quick and simple approach actually
  Test application executes further than latest iTcl

4.0
  iTcl 3.x object variable references (“@itcl …”) are

converted to TclOO equivalent
But:
  Not all code substitutions are performed

–  Adding the “my” keyword to existing code is tricky
–  4 regular expressions are not enough to handle this

 A package that “parses” Tcl is not available
–  Finally I gave up

  no regular expressions for some cases

12 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting: Differences (1)

Most notable differences between the two extensions:
  No configure/cget on TclOO objects
  No common variables across objects of the same

class in TclOO
  No “static” class methods (methods that do not

require an object to be called) in TclOO
  Different semantics for variables
  A specific method in the classes hierarchy of an

object cannot be called in TclOO
  TclOO requires the keyword “my” while calling

methods from inside of an object

13 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting: Differences (2)

Most notable differences between the two extensions:
  TclOO automatically exports methods that start

with a lowercase letter
  No facility for “local” to procedures objects (like

itcl::local) in TclOO

14 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Porting: Similarities

iTcl TclOO
method my method
$this [self]
chain next

itcl::scope my varname
inherit superclass

itcl::body oo::define body

Interesting features of TclOO
  Everything subclasses oo::object
  “mixin”s
  “unknown” on objects
  The “my” keyword

15 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

16 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Case study: the Ellogon NLP platform

  Ellogon is an infrastructure for natural language
processing
–  Provides facilities for managing corpora
–  Provides facilities for manually annotating corpora
–  Provides facilities for loading processing

components, and apply them on corpora
  Development started in 1998

–  I think with Tcl/Tk 8.1
–  ~500.000 lines of C/C++/Tcl code
–  A lot of legacy code, especially in the GUI

 No widespread use of tile/ttk
 No OO (i.e. iTcl) in most parts of the code

17 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon Architecture

C++ API

18 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon: plug-ins in many programming languages

19 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

The roadmap for Ellogon 2.0

The goals for Ellogon 2.0 are:
  Make Ellogon’s core thread safe (done)

  Make Ellogon multi-threaded (feasible?)
–  How Ellogon & the Tcl thread model can cooperate?

  Modernise GUI (using OO and ttk widgets)
–  ~30% completed
–  Initially written in iTcl, now ported to TclOO
–  Includes a complete rewrite of Annotation Tools of

Ellogon

20 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Annotation Tools: polymorphism required

Annotation tools is a very demanding area
  A lot of tasks that need annotated corpora
  Each task, may have its own annotation scheme
  Each group, may pose different requirements for

the tool

The first generation of tools was:
  coded in plain Tcl/Tk
  difficult to adapt/extend

21 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

First generation tools (1)

22 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

First generation tools (2)

23 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

First generation tools (3)

24 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (1)

25 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (2)

26 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (3)

27 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (4)

28 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (5)

29 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (6)

30 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (7)

31 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (8)

32 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (9)

33 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Second generation tools (10)

34 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Classes Decomposition (1)

ToplevelWindow

TextWidgetDisplay

ButtonAnnotator

DocumentSelector

EventDefiner

35 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Classes Decomposition (2)

ToplevelWindow

TextWidgetDisplay

ButtonAnnotator

DocumentSelector

EventDefiner

36 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

37 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon TclOO classes: cget/configure

  Add cget/configure on all classes
–  No need for a complex implementation of configure/

cget
 I only use them to get/set variable values

  Very easy to add new methods on all objects!
–  Everything is a child of oo::object

  Simple implementation

oo::define oo::object method cget {name} {

 set name [string range $name 1 end]

 my variable $name; return [set $name]

};# cget

38 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon TclOO classes: common (1)

  TclOO has another trick:
–  Procedure oo::define::<name> extends oo::class

 Implementing ::oo::define::common allows to use the
keyword “common” during class creation

proc ::oo::define::common {varname args} {
 if {[llength $args] > 1} { … }
 # Get the name of the current class
 set cls [lindex [info level -1] 1]
 oo::define $cls self export varname; # Export method varname
 # Initialise the variable
 if {[llength $args]} {
 set [$cls varname $varname] [lindex $args 0]
 }

};# ::oo::define::common

39 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon TclOO classes: common (2)

  But common also needs a method to be called from
methods accessing common variables

oo::define oo::object method common {args} {

 if {![llength $args]} return

 set callclass [lindex [self caller] 0]

 oo::define $callclass self export varname

 foreach vname $args {

 lappend pairs [$callclass varname $vname] $vname

 }

 uplevel 1 upvar {*}$pairs

};# common	

  Common and my cget/configure do not mix

40 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon TclOO classes: class methods (1)

Define "classmethod"...

proc ::oo::define::classmethod {name {args ""} {body ""}} {
 # Code from: http://wiki.tcl.tk/21595#pagetoce30e53a1
 set argc [llength [info level 0]]
 if {$argc == 4} {
 uplevel 1 [list self method $name $args $body]
 } elseif {$argc == 3} {
 return -code error "..."
 }

 # Get the name of the current class
 set cls [lindex [info level -1] 1]
 # Get its private "my" command
 set my [info object namespace $cls]::my
 # Make the connection by forwarding
 tailcall forward $name $my $name
};# ::oo::define::classmethod

41 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon TclOO classes: class methods (2)

  What about inheritance?

oo::class create ELEP::Base::Utilities {

 classmethod userAppDir {} {...}
}

oo::class create ELEP::System::System {

 superclass ELEP::Base::Utilities

 classmethod systemConfigurationDir {} {
 return [my userAppDir]/Systems/Config
 };# systemConfigurationDir

  unknown method "userAppDir"

42 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

43 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Widget classes (1)

  In Ellogon, I don’t think in terms of Tk widgets
–  In fact, I totally ignore them

  Only 3 classes available, which represent widgets
–  Toplevel, Dialog, Widget, RibbonToplevel

 RibbonToplevel has a Windows Ribbon instead of a menu

  Some common methods for all classes
–  getToplevel
–  getToplevelObject
–  getClientArea

  Automatic variables
–  win for toplevel/dialogs
–  widget for widgets

44 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Widget classes (2)

  Widgets are destroyed when objects are deleted,
and vise versa
–  In a way similar to iTk

  Toplevel/Dialogs generate widgets based on the
object names

  Objects of the Widget class need the widget type
and name
–  i.e. Widget ttk::button .button ?args?

45 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Ellogon building blocks

  Many building blocks that inherit Widget
–  Only the Tk widget that will contain the block is

required (the “parent”)
–  i.e. ButtonAnnotator, 1-Click selector,

TemplateFiller, TextViewer, HTMLViewer,
AllignedTextViewer, etc.

  A generic class that represents an Annotation tool
–  Inherits from Toplevel
–  Splits client area into two columns, separated by a

ttk::panedwindow
  All tools, subclass this class, add another layout if

required, and create/place building block objects

46 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

47 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Creating an Annotation Tool

  Gluing building blocks is easy, but what about the
user experience?

  Lets see an example, by creating an Annotation
tool that annotates a document with a semantic
model (i.e. an ontology)
–  For this task, the bits required are:

1.  An annotator to annotate “properties” found in the
text

2.  An annotator to group properties into objects
3.  An annotator to group objects into other objects

48 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Annotating properties: the button annotator (1)

49 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Annotating properties: the button annotator (2)

  Cooperates with a viewer (text, HTML, Aligned
text, Aligned HTML) and allows the user to
annotate the selected text with one or more
properties

  The annotation schema is dynamic
–  Method createSpecificationSelectorObject()

 Creates an AnnotationSpecificationSelector object
–  Method show()

 Calls AnnotationSpecificationSelector.show() and waits
for an answer

–  Various schemas are read from an XML file, and
presented to the user

–  Button annotator adapts to the selected schema
50 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Grouping properties/objects

  The TemplateFiller annotator
  Again presents a dynamic schema
  Now method createSpecificationSelectorObject()

–  Creates an
AnnotationAndTemplateSpecificationSelector object

  How easy is to mix the two annotators?
–  Easy, just create the two objects and place them on

a single annotation tool
  Any disadvantages?

–  Yes. The user gets two dialogs for configuring a
single tool!

51 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

The multiple dialog issue

How can this be resolved?

  A new class must be created, which is the
concatenation of the two configuration dialogs

  The two objects must somehow create and use the
same configuration object

52 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

53 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Concatenating dialogs (1)

  In iTcl was very easy:
–  Create a new class that inherits the two

configuration objects
–  iTcl has the ability to call explicitly methods from the

class hierarchy:
 Method populateDialogFrame() just creates two

ttk::labelframe and calls populateDialogFrame() of the
two inherited classes with the proper parent frame.

  In TclOO the task is far more complex!
–  You cannot simply inherit both classes

54 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Concatenating dialogs (2)

The best alternative?
  Create a new class that behaves as both

configuration selectors, and drives instances of the
two selectors internally
–  The new class must have all methods of the two

objects
–  The new class must have all the public variables of

both objects (so as cget/configure to work)

55 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Exposing variables of contained objects

1.  Declare all variables as “automatic”
–  i.e. in class, with the “variable” keyword

2.  Use “upvar” to link variables between two objects

56 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Exposing methods of contained objects

  Methods from both contained objects must be
exposed - through “unknown”

method unknown {args} {
 ## Try to call the aggregated objects...
 if {![catch {$ann_selector {*}$args} result]} {
 return $result
 }
 if {![catch {$templ_selector {*}$args} result]} {
 return $result
 }
 next unknown {*}$args
};# unknown

57 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

  So, are all problems solved?
–  No

  Each class stores state information in the
configuration array of the application, using a key
based on the class name.

method saveState {} {
 $ann_selector saveState
 $templ_selector saveState
};# saveState
method restoreState {frame} {
 $ann_selector restoreState $frame.annotation
 $templ_selector restoreState $frame.template
};# restoreState	

Problems solved?

58 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

What about efficiency?

  Is there a problem using unknown to “distribute”
method calls to the proper object?
–  I don’t know, I haven’t measured
–  I assumed that there is a penalty, so I explored

alternatives before implementing a similar approach
for “merging” Button Annotator & Template Filler

  What I finally did, was to create a new class which
–  Inherits only ButtonAnnotator
–  The various methods of TemplateFiller are copied/

extend methods of the new class
 Thus “next” works, as there is only a linear hierarchy to

follow
 The configuration selector dialog object is single/common

59 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Overview

  The shock of Tcl 8.6

  Porting existing code to TclOO

  Case study: the Ellogon NLP platform

  iTcl facilities in TclOO

  Organisation of classes in Ellogon

  Creating an Annotation Tool

  Concatenating Dialogs

  Conclusions

60 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

TclOO: “gray” areas

  Mixins
–  I have used “mixin”s a few times, but what are

really “mixin”s?
 What happens with colliding method names, the

constructor and inheritance?

  Inheritance
–  How do you inherit from classes whose constructors

take different arguments?
–  The same issue can occur with plain methods and

“next”
–  Is “next” limited, and an additional invocation

method is required?

61 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Conclusions (1)

  Both iTcl & TclOO have their strengths and
weaknesses

  iTcl:
–  Lacked support for unknown
–  I had to use the “@itcl …” variable naming for

serialising objects
–  info method is error-prone

62 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Conclusions (2)

  Both iTcl & TclOO have their strengths and
weaknesses

  TclOO:
–  No support for calling a specific class method from

the superclasses
–  Variables cannot be initialised without a constructor
–  Are traces supported?

 Can constructor arguments be recorded?

  Should things like classmethod & common be
moved from the wiki to the Tcl core?

63 13 Oct 2010 iTcl & TclOO: From the perspective of a simple user

Thank you!

13 Oct 2010 64 iTcl & TclOO: From the perspective of a simple user

