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ABSTRACT 
JNEM, the Joint Non-kinetic Effects Model, is a large simulation 
application.  Written almost entirely in Tcl/Tk, it makes 
architectural use of the Snit object system and the SQLite3 
database engine.  This paper addresses a number of architectural 
patterns and solutions that have been found useful during the two-
plus years of JNEM development.  Patterns include the three-layer 
package architecture (application, domain, and utility); Snit types 
as application modules; saving and restoring application state;  the 
database-backed objects; SQLite3 as an application memory 
debugger; and a generalization of the scrollbar/scrollable pattern. 
 
1. Joint Non-kinetic Effects Model 
The Joint Non-kinetic Effects Model (JNEM) is a military training 
simulation that participates in a federation of simulations used to 
train military commanders.  The federation is called the Joint 
Land Component Constructive Training Capability (JLCCTC) 
Multi-Resolution Federation (MRF).  JNEM's role as a federate in 
the federation is to model the responses of the civilian population 
to force activities, up to and including actual combat, thus adding 
non-kinetic effects to the kinetic effects modeled by the battlefield 
simulation.  JNEM is written primarily in Tcl/Tk 8.4, with a small 
amount of code in C/C++. 
 
This paper describes certain architectural patterns and solutions 
used in the implementation of JNEM; it does not address specifics 
of the JNEM implementation, simulation model, or data formats.  
The techniques described here can be adapted to any large 
application/system with similar requirements. 
 
2. The Three-Layer Package Architecture 
Like many large application development efforts, JNEM is not 
really a single application; rather it is a system containing many 
applications of various sizes, of which the JNEM simulation 
proper is the largest.   The system also includes control GUIs (the 
JNEM Console), simulators designed to represent other federates 
during development, and a number of ancillary tools of varying 
degrees of complexity, both GUI and non-GUI.  As a result, there 
is opportunity for significant code sharing between the various 
components of the system. 
 
The cleanest mechanism for sharing code between applications is 
the use of well-written reusable code libraries.  Reusability, 
however, is context-dependent.  Every coding effort is based on 
assumptions as to the context in which the resulting software will 
be used.  This context then determines the arena in which the 
software is reusable. 
 
The wider the context in which the code is to be reused, the more 
general and flexible (and hence the more complicated and costly) 
the code needs to be. The narrower the context, the more 

assumptions the author of the code may make and the more 
specific (and hence simpler and less costly) the code may be. 
 
It is important to target code to the proper context.  If a library 
module is written for too broad a context, it will be more complex 
than necessary, and thus more costly to implement and maintain.  
The increased complexity is often reflected in the module's 
interface; this in turn increases the complexity of all clients of the 
module, thus increasing the cost of using the module. 
 
If the library module is written for too narrow a context, then it 
may not be possible to take advantage of unforeseen opportunities 
for reuse that will arise.  When this happens, either the library 
module needs to be generalized—if there is time—or the coder is 
likely to be forced to engage in "bad reuse": copying the library 
code into a new module with small changes.  
 
Deciding the appropriate context for a new module of code is to a 
certain extent an art, and depends on a clear vision of what the 
project's needs will be in the future.  However, we have found that 
the following three-layer package architecture greatly simplifies 
the decision: 
 

Application Layer 
Domain Layer 
Utility Layer 

 
Each layer represents a particular context and has its own 
particular constraints; generality increases from top to bottom.  
The layers are defined in detail below; once they have been 
defined, we will discuss how code is structured within each layer. 
 
2.1 The Utility Layer 
The utility layer represents the widest context in the system.  Code 
written for this layer should make few assumptions about the 
environment in which it runs, and, in particular, should avoid 
placing requirements on the application.  For example, JNEM's 
utility layer includes a pair of comm(n)-based communications 
modules, commclient(n) and commserver(n).  Among their duties 
is the logging of client connects, disconnects, and other message 
traffic.  However, they write to a log file only when configured to 
do so; otherwise they would be suitable for large, long-running 
applications but not for short ad hoc utility scripts. 
 
These considerations place the following constraints on modules 
in the utility layer: 
 
Modules should not touch the global namespace.  All utility 
layer code should be defined in package namespaces, with public 
names exported. 
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Modules without state should usually export a single ensemble 
command.  This was determined to be a beneficial pattern by 
Roseman [3], and minimizes the risk of name collisions if names 
are imported into the global namespace.  There are exceptions; 
frequently-used utility commands can be implemented as normal 
commands.  But generally speaking, a family of related 
commands should be implemented as an ensemble.  For example, 
JNEM's family of matrix operations are implemented as a single 
ensemble, mat(n). 
 
Modules with state should be implemented as object instances. 
JNEM's logging facility, for example, is defined as a logger(n) 
object type, thus allowing an application to create multiple 
logger(n) objects and log to multiple files simultaneously. 
 
Object instances must be wired together explicitly.  If a 
commserver(n) object is to log communications traffic, for 
example, it must be given the name of a logger(n) object.  It 
cannot simply assume that there is a logger(n) with a well-known 
name. 
 
JNEM's utility layer includes the following kinds of modules: 
 
• String and list handling 
• Date and time 
• Interprocess communication 
• Math and geometry 
• Control structures 
• Data types 
• Logging 
• General purpose megawidgets 
 
A module that contains no domain-specific knowledge should be 
included in this layer on one of two conditions: if it is definitely 
needed by two or more applications within the system, or if it has 
potential for reuse and little extra work is required to make it a 
library module.  The logger(n) module is an example of the first 
case; string and list handling routines are examples of the second. 
 
JNEM is not a cross-platform application; it specifically targets 
Linux/X-Windows.  If it were to be made cross-platform, platform 
details would be handled in this layer as well. 
 
2.2 The Domain Layer 
The domain layer contains code intended for reuse in multiple 
applications in our particular application domain.  For example, 
JNEM defines a module called sqldatabase(n), a Snit-based 
wrapper for SQLite3 database objects.  Among other features, the 
wrapper defines the JNEM database schemas.  This information is 
clearly specific to our application domain, and hence does not 
belong in the utility layer; on the other hand, we wish to be able to 
write a variety of applications, from the JNEM simulation proper 
down to simple scripts, that access JNEM database files.  
Consequently this code belongs in the domain layer, along with 
domain-specific data types, file format definitions and parsers, 
multi-application simulation modules, and domain-specific multi-
application GUI components.  As with the utility layer, code 
written for this layer should avoid placing requirements on the 
application. 
 
Domain layer code generally operates under the same constraints 
as utility layer code; however, it will include domain-specific 

knowledge and will be more likely to implement specific policies.  
JNEM's utility layer, for example, includes a module called 
sqlib(n), which contains routines for querying SQLite3 schemas 
and for formatting the results of SQLite3 queries.  This module 
makes no assumptions about the SQLite3 database upon which it 
operates, and defines no policies for how the database is used.  
The domain-layer module sqldatabase(n), on the other hand, not 
only defines the database schema but also implements a 
document-like open/save transaction policy. 
 
A module containing domain-specific knowledge should be 
defined in this layer on either of two conditions: if it is definitely 
needed by two or more applications within the system, or if it has 
potential for reuse and little extra work is required to make it a 
library module.  
 
It sometimes happens that a module requiring domain-specific 
infrastructure would also be useful in programs based solely on 
the utility layer.  In this case, one needs to consider generalizing 
the module and its interface so that the module itself contains no 
dependencies on the domain layer, but can be configured to make 
use of domain-specific modules when available.  
 
2.3 The Application Layer 
The application layer contains code that resides in a single 
application.  Properly speaking, then, there is no system-wide 
application layer; each application within the system has its own. 
Code written for this layer may access any desired modules from 
the two lower layers, and may embody any assumptions that 
simplify the implementation.  The application may use the global 
namespace freely, and many objects in the application layer will 
have well-known names.  For example, the application may define 
a global logger(n) object called ::log, and all application 
modules may use it freely by that name.  No "wiring together" of 
objects is required. 
 
We have found the following guidelines to be helpful. 
 
Define public names in the global namespace.  We are used to 
not polluting the global namespace in our code, so as to avoid 
name collisions.  But if the application itself cannot use the global 
namespace, who can? 
 
Define private names in namespaces.  A module's private 
internal commands should be defined in a module-specific 
namespace, so as to avoid inadvertant inter-module name 
collisions. 
 
Prefer singletons to object types with multiple instances.  
Application modules will frequently contain state.  Unless 
multiple instances of that state are definitely required, however, 
modules should be implemented as singleton objects with well-
known names.  This simplifies the code, and makes it easier to 
call modules from other modules without explicit wiring. 
 
Implement singletons as ensemble commands.  This gives each 
singleton module a single well-known name, and allows it to be 
treated as an object by other modules.  The benefits of using 
ensemble commands for module public interfaces are discussed in 
[3].  
 



Anatomy of a Large Application William H. Duquette Page 3  

 

2.4 Internal Architecture 
Since the utility and domain layers consist of library modules, it 
will come as no surprise that each is implemented as a collection 
of packages.  In principle, each module in these layers could be 
implemented as a separate package.  For simplicity, however, 
JNEM groups the modules into a small number of packages, as 
shown below, although each module has its own man page:  
 

 GUI Non-GUI 
Application Layer jnem_app(n) 
Domain Layer simgui(n) simlib(n) 
Utility Layer gui(n) util(n) 

 
In use, the primary distinction is between GUI and non-GUI code, 
as requiring the Tk package in a non-GUI application has 
undesirable effects.  Consequently, the utility and domain layers 
are each defined as a pair of library packages, one GUI and one 
non-GUI, each of which contains a number of modules. 
 
Two architectures are used at the application layer: small 
applications, such as command-line utilities, are generally 
implemented as simple scripts which load the packages they need 
from the domain and utility layers.  Larger applications, such as 
the JNEM simulation proper, are implemented as a short loader 
script which loads an application package, jnem_app(n).  This 
architecture allows the application to contain arbitrarily many 
modules in an easily managed way. In JNEM, all such 
applications share a single loader script, jnem(1).  Thus, the 
command 
 
$ jnem sim 
 
causes the jnem(1) script to load the jnem_sim(n) package and 
invoke its main entry point.  By convention, every jnem_app(n) 
package contains at least one module, app.tcl, which defines a 
singleton object called ::app.  The application's main entry point 
is then ::app init. 
 
3. Snit Types as Application Modules 
As stated above, an application module should present its public 
interface as an ensemble command defined in the global 
namespace, while the module's internal code should reside in a 
module-specific namespace.  A snit::type definition serves 
this purpose admirably well: 
 
• The type's name, defined in the global namespace, is the 

ensemble command. 
• The type's type methods are the ensemble command's 

subcommands. 
• All of the type's code and variables naturally reside in the 

type's namespace. 
 
In addition, ensemble subcommands can be delegated to 
component objects or to other application modules, and ensemble 
subcommands can themselves be ensembles with subcommands 
of their own. 
 
The one necessity is to ensure that the snit::type cannot 
create instances; otherwise, a mistyped subcommand will be 
treated as the name of an instance to be created, with mystifying 
results. The skeleton for such a module looks like this: 

snit::type mymodule { 
    pragma -hasinstances   no 
 
    typevariable myvariable 
 
    typemethod mysubcommand {args} { 
        ... 
    } 
    ... 
} 
 
The ::mymodule command is global, but all of the module's 
code then resides in the ::mymodule:: namespace. 
 
The type's standard "info" and "destroy" methods can also be 
disabled, allowing them to be redefined by the module if the 
author so desires. 
 
3.1 Library Ensembles 
Ensemble commands implemented in the utility or domain layers 
can also be implemented in this way, placing the command in the 
package namespace.  JNEM's matrix manipulation module, 
mat(n), a module of package util(n), is implemented something 
like this: 
 
namespace export ::util::mat 
 
snit::type ::util::mat { 
    pragma -hasinstances   no 
 
    typeconstructor { namespace import ::util::* } 
 
    typemethod add {mat1 mat2} { ... } 
    ... 
} 
 
The ensemble command is defined in the ::util namespace, as 
are util(n) commands.  Note that the ensemble's code resides in 
the ::util::mat namespace, and consequently cannot see 
other commands defined in ::util; hence, the ensemble must 
import them as shown.  This is a nuisance, as it constrains the 
order in which util(n)'s modules are loaded.  If JNEM were using 
Tcl 8.5 and Snit 2.1, this would not be necessary; in Snit 2.1, Snit 
types automatically add their parent namespace to their 
namespace path. 
 
4. Saving and Restoring Simulation State 
Training exercises can run twenty-four hours a day for five days 
or more.  If a simulation in the training federation should crash, it 
is vital not only to get it running again as soon as possible, but 
also to get it running again with the same state it had prior to the 
crash (possibly adjusted slightly so as to avoid crashing again).  
Now, the state of a simulation is a complex thing, and the only 
way to recreate it from scratch is to re-run it with the same inputs 
and random draws. After more than a few hours, though, the time 
involved in "running up" the simulation from scratch is 
prohibitive. Consequently, every simulation in the federation is 
periodically asked to save its state so that the federation state can 
be restored later.  Such a saved state is called a checkpoint, and 
saving simulation state is referred to as checkpointing the 
simulation. 
 
In one sense, this is no different than the requirement on any 
document-centric application—a word processor, say, or a 
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spreadsheet.  There are, however, two distinctions of note.  First, 
the state data for a complex simulation can be of great variety and 
extent.  In a word processor, each document is likely to be 
represented as an object of some type, probably managing a 
hierarchy of lower-level objects; and saving the document to disk 
is a natural operation on the document object.  In a complex 
simulation, there are likely to be many, many objects and ancillary 
data to be saved, and there might not be any obvious organizing 
principle corresponding to the notion of a "document".  Second, 
the requirement to load and save state is implicit in the notion of a 
document-centric application; it is not similarly implicit in the 
notion of a simulation.  History shows that checkpointing is an 
architectural issue, and that it can be very difficult to implement if 
it isn't taken into account from the beginning. 
 
Code written to save and restore complex application state to and 
from disk can be extremely fragile.  First, all relevant state must 
be identified; if any state variables are omitted, it will not be 
possible to restore the simulation's state precisely.  We will refer 
to this set of checkpointed state variables as the application's 
persistent state.  Second, the routines which read the checkpoint 
must exactly mirror the routines that write it out, or efforts to 
restore will fail.  An error in either one renders the checkpoint 
useless; and naturally, it's a common error (especially in 
applications for which checkpointing is an afterthought) to update 
the reader and forget to update the writer, or vice versa.  The 
solution is to provide a framework for saving and restoring 
arbitrary state variables, and then register all state variables with 
the framework.  
 
In most languages, it would also be necessary to register the type 
of each state variable.  In Tcl, where everything is a string, 
defining such a framework is nearly trivial.  JNEM follows a few 
simple patterns which make saving and restoring simulation state 
both easy to implement and robust in the face of change.  
 
JNEM's internal state is of four kinds: 
 
• Persistent state stored in the run-time database (RDB) 
• Persistent state stored in Tcl variables which are mirrored in 

the RDB. 
• Persistent state stored in Tcl variables which are not mirrored 

in the RDB. 
• Non-persistent state stored in Tcl variables. 
 
Only the first three kinds need to be included in a simulation 
checkpoint; however, the latter three kinds need to be clearly 
commented and distinguished in the code. 
 
4.1 Saving the Run-time Database 
The run-time database, or RDB, is an SQLite3 database.  Much of 
JNEM's simulation data is stored there, particularly its knowledge 
of the various entities in the simulated world. Checkpointing the 
data stored in the RDB is, of course, trivial—JNEM creates a 
checkpoint simply by committing all current updates and making 
a copy of the database file.  The data is restored by copying and 
opening the checkpoint file as a new RDB. 
 
The checkpoint file is thus an SQLite3 database file.  If all 
persistent state were stored in the RDB, no further work would 
need to be done.  Inevitably, for performance or ease of 
implementation, some data will be stored only in memory. Some 

state data, notably object instance data, is stored in memory and 
automatically mirrored on change in the RDB; this makes it easy 
to perform queries on objects and also to produce reports.  Such 
data is automatically checkpointed.  Other state data in Tcl 
variables gets copied to and from the database on checkpoint and 
restore, as discussed in the following section. 
 
4.2 Saving In-Memory Application State 
The simulation consists of a number of modules, each of which 
has its own set of Tcl variables, some of which contain persistent 
data and some of which do not. Each module that has Tcl 
variables containing non-mirrored persistent state is registered 
with the checkpoint management module. This registry is simply a 
hard-coded list of module names; it is updated by hand as 
modules are added and deleted. 
 
Each such checkpointable module is required to have the two 
following subcommands: 
 
module checkpoint 

Returns the module's non-mirrored persistent state as a 
single Tcl value.  This is usually a dictionary, and 
frequently a dictionary of dictionaries. 

 
module recover state 

Restores the module's state to state, which must be a 
value returned by the module's checkpoint 
subcommand.  

 
When a checkpoint is to be saved, the checkpoint manager simply 
asks each checkpointable module for its state, and stores it under 
the module's name in an RDB table called checkpoint. which 
has two string-valued columns, component and data.  When 
saving a checkpoint, the application retrieves the state for each 
checkpointable module and stashes the module's name and state 
data into the checkpoint table.  When restoring from a 
checkpoint, the application retrieves the module names and state 
values from the restored RDB file and asks each module to 
recover itself. 
 
The preceding discussion uses the term "module", but some of the 
checkpointed "modules" are actually instances of snit::types.  
What they all have in common is that they all have well-known 
global names, are created at simulation start, and persist for the 
life of the simulation. (Transient objects, on the other hand, mirror 
their state to the RDB.) Thus, the code is extremely simple; the 
only maintenance that is ever needed at the application level is to 
add and delete names from the list of checkpointable "modules" as 
the simulation's implementation changes during the course of 
development. 
 
4.3 Saving In-Memory Module State 
The previous section explained how the application saves and 
restores the persistent state of its modules to and from the RDB 
using each module's checkpoint and recover 
subcommands.  This section explains how each module structures 
its internal data, and how the checkpoint and recover 
subcommands are usually implemented. 
 
First, each checkpointable object is either a singleton 
implemented as a snit::type, as described above, or an 
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instance of a snit::type.  Either way, the object's variables 
are grouped and clearly labeled as to whether they are 
checkpointed or not. Second, almost all checkpointed data is 
stored in one or more Tcl arrays.  Some data is array-oriented by 
nature; and the remaining scalar data is stored in an array simply 
to make checkpointing convenient.  The checkpoint and 
recover subcommands can then be implemented like this: 
 
typemethod checkpoint {} { 
    list \ 
        array1 [array get array1] \ 
        array2 [array get array2] 
} 
 
typemethod restore {checkpoint} { 
    foreach {name value} $checkpoint { 
        array unset $name 
        array set $name $value 
    } 
} 
 
In a few cases an object might have component objects with 
persistent state; this complicates the code slightly.  But in each 
case, the pattern is the same: the object's state is checkpointed as a 
dictionary of named values and recovered accordingly. 
 
The beautiful thing about this mechanism is that it is only 
necessary to touch the checkpoint/recover code when a 
checkpointed array or component is added to or removed from an 
object.  Since checkpointable scalar variables are grouped into an 
array, any number of new scalar variables can be trivially added 
and correctly checkpointed just by defining them in that (carefully 
labeled) array. 
 
In short, simply by storing data in arrays and adopting a simple 
convention, we get trouble-free saves and restores of in-memory 
data with almost no maintenance overhead.  It just works. 
 
5. Database-Backed Objects 
The word "object" being oversubscribed, we will adopt the 
following terminology for this section.  An object is a standard 
Tcl object: a command with subcommands.  A singleton is an 
object defined as a snit::type with type methods.  An 
instance is an object defined as an instance of a snit::type.  
An entity is a simulated thing with associated data that might or 
might not have an associated object.  
 
In JNEM, for example, a ground unit—a platoon, say—is an 
entity.  Ground unit data is received from the federation, and each 
unit's data is stored as a row in the RDB's units table, thus 
allowing units to be queried in interesting ways.   Since units have 
little behavior within JNEM itself, there is no Tcl object 
associated with each unit.    
 
Fixed site entities, e.g., power plants and hospitals, do have 
significant behavior within JNEM, and hence have significant 
amounts of associated code and data.  In JNEM v1, all entity data 
was stored in the RDB, and the related code for a particular entity 
type resided within one more singletons within the application, 
singletons whose primary task was something else.  There were 
three advantages to this approach: 
 

• Entity data could be easily queried. 
• Entity data was trivially included in saved checkpoints. 
• Entities by their nature are transient, and the housekeeping 

nuisance of saving and restoring transient instances was 
thereby avoided. 

 
There were also disadvantages: 
 
• Code related to an entity type was split between different 

modules, wherever the entities were used; there was no 
central place for it to live. 

• All changes to entity data required explicit SQL updates to 
the RDB, thus making the code uglier and more verbose. 

 
(A note on using an SQLite3 database for an application's record 
data: it is sometimes reasonable to write an API for updating 
records in the database, but it is rarely reasonable to write an API 
for querying records.  Such an API is never as expressive as SQL 
SELECT statements, and it is much faster to do a SELECT and 
allow SQLite3 to iterate over the selected entity data than it is to 
do a foreach over entity IDs and then query the RDB for each 
entity's data.) 
 
In JNEM v2, it soon became clear that the entity-related code was 
becoming unmanageably ugly, and that some entities could 
benefit from being represented as Tcl objects, i.e., as Snit 
instances.  Now, saving and restoring transient instances is a 
nuisance: on a restore, one must destroy all existing transient 
instances, and then recreate the saved instances.  There are two 
aspects to this problem: creating the restored objects with the 
correct names, so that they can be used by other code, and 
creating the restored objects with the correct data. Moreover, we 
wished to make this change without losing the benefits of storing 
entity data in the RDB.  The result was the "databased-backed 
objects" pattern.  The details of the pattern are as follows. 
 
Each entity type is mapped to a particular RDB table; individual 
entities are represented as rows in the table.  Each entity has a 
unique ID, which is the table's primary key.  Entities are always 
addressed by their unique ID, not by any object name.  Thus, the 
object names are arbitrary. 
 
The first step is to make it possible to efficiently retrieve a Tcl 
object for a given entity, given only the entity's ID. At any given 
time, an entity might or might not have an associated Tcl object.  
Any routine that needs to access an entity as a Tcl object requests 
such an object, giving the entity's ID.  The object is created, if it 
does not already exist, and is cached for later use.  By convention, 
the routine requesting the object may only presume that the 
returned object name is valid until the routine itself returns.  The 
routine may use the object name freely, and may pass it to other 
routines; however, only the entity ID should be saved in data 
structures.  Entity object names are not persistent.  If the state of 
the simulation changes, i.e., if state is restored from checkpoint, 
then the content of the RDB is presumed to be different.  The 
cache of entity objects is cleared, and all such objects are 
destroyed.  By this means, objects are created on demand and then 
retrieved as needed.  
 
This part of the pattern is implemented by a singleton associated 
with the entity type; fixed site entities, for example, are managed 
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by the site singleton.  The site singleton provides the 
following method (among others): 
 
site get id ?-create? 

Returns an object instance for the fixed site entity with 
the given id.  Unless -create is specified, the entity 
must already exist in the RDB. 

 
Thus, any routine that needs to access a fixed site's behavior will 
know the site's ID and will call site get to retrieve the 
instance.  Any routine which merely wishes to query one or more 
fixed sites will query the RDB directly. 
 
The entity objects are, perhaps surprisingly, not instances of the 
site type, but rather instances of the siteType type.  As noted 
previously, defining a snit::type with both type and instance 
methods can lead to perplexing bugs if the type is called with a 
misspelled type method.  (Note that snit::widgets are more 
or less immune to this problem, as a misspelled type method name 
is unlikely to look like a widget name.) 
 
The second step is to tie an entity object's data to the entity's row 
in the RDB.  When an entity object is created, it retrieves the 
entity's row from the RDB, and stores it in an instance variable, an 
array called info.  This allows the object's methods to read this 
data without the cost of accessing the database.  The entity object 
then provides at least the following methods: 
 
$entity set name value 

Sets the value of entity field name, updating both the 
info array and the related RDB row. 

 
$entity get name 

Retrieves the value of entity field name from the info 
array. 

 
The rules that ensure consistency between the data stored in the 
RDB and the data mirrored in the entity objects are as follows: 
 
• Only type methods of the entity singleton and methods of the 

entity instance type are allowed to use SQL queries to 
modify the contents of the entity type's table in the RDB. 

• Other modules must use the entity singleton to affect entities 
as a group, and entity objects to update fields of individual 
entities.  They may use the set method directly, or use other 
entity instance methods which call set indirectly. 

• If the entity singleton updates existing entities, then the 
singleton's instance cache must be cleared.  We will not try to 
update all existing entity instances immediately; instead, we 
will recreate them on demand. 

 
This pattern preserves the advantages of saving entity data in the 
RDB while allowing entity code to be well-structured and easily 
maintained, at minimal cost in code complexity. 
 
6. SQLite3 as a Memory Debugger 
In conventional C or C++ programming, a perennial difficulty is 
finding out precisely what's going on in the program's memory, 
especially in environments where an external debugger is difficult 
or impossible to use.  Tcl/Tk eases this problem by its very nature; 
with a small amount of work, any application can pop up a 
"console" window with a command line, so that the developer can 

query Tcl variables via Tcl commands.  Even so, navigating 
complex data structures can still be tedious, especially when data 
is stored in Snit instance variables. 
 
As noted above, JNEM uses its "Runtime Database", or RDB, as a 
structured memory store. The user is allowed to enter SQL 
"SELECT" queries for the RDB from the JNEM Console's 
command line interface; the query results are returned in tabular 
format.  To the extent that the application's data is stored in the 
RDB, then, that data is easily browsed using arbitrary queries—
which has the effect of turning SQLite3 into a memory debugger 
without peer.  Any desired data or condition can be queried; and if 
desired, triggers can be used to trap particular conditions as they 
occur.  It would be difficult to overstate the convenience of this 
feature.  
 
7. The Scrollbar/Scrollable Pattern 
The scrollbar/scrollable pattern is familiar to every Tk 
programmer; adding scrollbars to a text widget to create a simple 
text editor is a standard introductory example, but scrollbars can 
also scroll canvas widgets, frames, and listboxes.  Scrollbar A and 
scrollable widget B have a symbiotic relationship such that if A's 
position is changed, B's viewport updates to match, and vice 
versa.  At the lines of code level, A and B are wired together by a 
pair of callback/subcommand protocols: 
 
• When A's position is changed, A's -command callback calls 

B's yview subcommand to update B's viewport. 
• When B's viewport is changed, B's -yscrollcommand 

callback calls A's set subcommand. 
• Both A and B are smart enough not to do anything if the 

subcommand tells them to do what they are already doing. 
• A and B are kept in sync through all changes, whether 

triggered by the user or by the application.  
 
The beautiful thing about this pair of callback/subcommand 
protocols is that it is defined by the arguments passed by the 
callback to the subcommand, not by either the callback or the 
subcommand name.  This is the feature that allows the text widget 
to use two scrollbars at once, using the same protocols.  Only the 
developer who glues A and B together needs to know the callback 
and subcommand names. 
 
During JNEM v2 development, we realized that, properly 
abstracted, this pattern can apply to pairs of other kinds of 
widgets, as a "meta-pattern" if you will. For example, JNEM's log 
browser includes a search box called the "finder".  Entering a 
search string in the box causes matching log entries to be 
highlighted in the body of the browser; further, the search box 
displays a count of the number of matches, and buttons to scroll 
the log browser from one match to another.  If the content of the 
log browser is updated, then the search box must update its 
search. 
 
Our initial implementations of the finder and log browser were 
rather ugly; we kept trying to make the log browser subordinate to 
the finder, and we kept having synchronization problems.  The 
difficulty was that updates were received by both the finder and 
the log browser, and the log browser's updates were being 
mishandled, precisely because the finder was not involved.  
Pondering the Scrollbar/Scrollable pattern, we realized that 
neither the finder nor the log browser should be in charge; rather, 
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the two widgets must be peers, each keeping itself synchronized 
with the other.  This could be called the Finder/Findable pattern; it 
has the same nature as the Scrollbar/Scrollable pattern.  Given a 
finder A and a log browser B, A and B are wired together by a 
pair of callback/subcommand protocols: 
 
• When the contents of A's search box is changed, whether by 

the user or by the application, A's -findcmd callback calls 
B's find subcommand, passing it the target string and 
search type (exact match, regular expression, etc.).  B does 
the search and highlights the matches.  Note that find is an 
ensemble subcommand with subcommands of its own. 

• When B's search results change, B's -foundcmd callback 
calls A's found subcommand, passing it the number of 
matches found and the index of the match currently 
displayed.  A updates its appearances, displaying the index 
and count, and enabling or disabling its arrow buttons 
appropriately. 

• If matches were found, then A's -findcmd can call B's 
find command to navigate through the found matches.  

 
JNEM has several "findable" widgets that will happily work 
together with the Finder widget. 
 
The meta-pattern can be expressed as follows:  given two objects, 
A and B, each of which must remain synchronized with the other 
in the face of updates to either one, glue the two objects together 
by means of a pair of callbacks and subcommands, such that A's 
callback calls B's subcommand, and vice-versa.  Define the 
protocol in terms of the required arguments of each subcommand 
only, as it allows B to communicate with multiple A's at the same 
time, much as the text widget communicates with multiple 
scrollbars. 
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