
Making Beautiful Graphs with Zplot
Remzi H. Arpaci-Dusseau

University of Wisconsin, Madison

Abstract
This paper introduces Zplot, a Tcl library for making two-
dimensional data plots. Zplot provides a simple set of
primitives that allow users to input and manipulate data,
plot said data in a variety of formats, and decorate the re-
sulting graphs with axes, labels, and other textual accents.
Zplot then outputs encapsulated PostScript for ease of in-
clusion in technical documents.

1 Introduction
Over the past 20 years or so, I have used a variety of tools
to generate data graphics for the various technical papers
with which I have been involved. These tools left me de-
spondent. They seemed incapable of producing all but the
most basic of graphs. Many common graph types were
not well supported (e.g., bar graphs). Simple data manip-
ulations were forced into pre-processing steps, creating a
clumsy tool chain. Manual manipulation on the resultant
PostScript was often required to achieve the desired result.

Zplot is the fruit that was born of this frustration. Zplot
is a pure Tcl library that allows the creation of two-
dimensional data graphics in a flexible and powerful man-
ner. Typical graphs are created with only a few lines of
Tcl, and complex and intricate graphs can be produced
from only tens of lines of code.

In this document, I describe Zplot. First, I give an
overview of the tool and the basic primitives it provides.
Then, I describe each of the basic routines in more detail,
showing how they can be combined to produce a wide
range of interesting graphs. Zplot drawing routines are all
built upon a set of low-level PostScript-generating com-
mands; these hide many of the details of generating cor-
rect PostScript from the rest of Zplot, boiling down most
activities to simple drawing commands that place lines,
shapes, and text on the drawing surface. I then conclude
the paper with a few comments about Tcl, related and fu-
ture work, and a final summary.

2 Overview
I now describe the basic primitives provided by Zplot. Let
us start with a typical (if simple) graph as an example, and
use this to drive the discussion of the different elements
of Zplot. A typical graphing script might be written as
follows (with the results of the graph shown in Figure 1).

0 2 4 6 8 10
0

2

4

6

8

10
A Sample Graph

T
he

 Y
-A

xi
s

The X-Axis

Figure 1:An Example Graph. The most bare-boned of plots
that one can make with Zplot.

input the library
source zplot.tcl
namespace import Zplot::*
describe the drawing surface
PsCanvas -title "file.eps" -dimensions 300,200
load some data
Table -table t -file "file.data"
make a drawable region for a graph
Drawable -xrange 0,10 -yrange 0,20
make some axes
AxesTicsLabels -title "A Sample Graph" \
-xtitle "The X-Axis" -ytitle "The Y-Axis"

plot the points
PlotPoints -table t -xfield x -yfield y \
-style triangle -linecolor red

finally, output the graph to a file
PsRender -file "file.eps"

In this example, the user creates a graph by first de-
scribing the drawing surface by callingPsCanvas and
specifying its dimensions. Then, the user calls theTable
routine to load data into Zplot, getting the data from a file
(file.data). The user, wishing to plot the data, now
creates a drawable region by calling theDrawable rou-
tine; doing so defines where on the canvas the drawable is,
and also how to map data points onto the drawing surface
(e.g., the range of x values and y values that map onto this
drawable). With a drawable defined, the user can now call

one of a variety of plotting routines (e.g.,PlotPoints)
to plot the data onto the drawable. The plotting routines
generally take a large number of arguments, enabling a
wide variety of plots to be produced; in this case, the
user chooses to draw a red triangle at each (x,y) point of
the graph. Finally, the user adds some graphical and tex-
tual decorations to help clarify the graph (in this case, by
simply calling theAxesTicsLabels routine), and then
renders the PostScript to a file by calling PsRender. I now
describe each of these primitives in more detail.

Note that each of these routines takes a large number of
optional parameters. To find out what these are (without
perusing the source code), one should simply call the rou-
tine and pass it the-help flag (or any bad flag); a useful
error message about the routine and all of its parameters
(including default values) will be printed.

2.1 Table
There are numerous routines available to users to input
and manipulate data; these are known as theTable*
routines. The most commonly used routine is the ba-
sic Table routine; usually, this routine is used to input
a file and then plot its points. A typical file (such as
file.data above) looks like this:

x y
0 0
1 1
2 2
3 3
4 6
...
9 4
10 8

The first line contains the “schema” for the table, with
names for each column; these names are subsequently
used to refer to the data when manipulating it or drawing
it to the screen.

One powerful routine is theTableSelect command;
it allows one to perform a database-like selection over a
table and put the results in a new table. Here is an example
that selects data from tablet with y-values above 5, and
plots green circles around said points (the results of which
are shown in Figure 2):

Table -table thi -columns x,y
TableSelect -from t -to thi -where {$y > 5}
PlotPoints -table thi -xfield x -yfield y \

-style circle -linecolor green -size 4

There are a number of other useful table functions
which are not covered here, mostly for manipulating
and summarizing data. For example,TableMath can
be used to perform a mathematical operation (or in-
deed, any valid Tcl expression) on a column of data.
The routineTableComputeMeanEtc is useful for

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
Using Table Selection

T
he

 Y
-A

xi
s

The X-Axis

Figure 2:Table Selection. The example uses a simple table
selection to find y-values that are greater than 5. Then, these
points are plotted as green circles.

computing means and deviations over a column, and
TableBucketize can be used to place data into bins.
All of these primitives are built on lower-level table rou-
tines that access each row of a table and perform opera-
tions on its contents; thus, more complex operations on
tables can be readily assembled by adventurous users.

2.2 Drawable
The drawable is likely the most important abstraction
that Zplot implements. A drawable is created by the
Drawable command. Each drawable has a name; the
default name isdefault and this default is used by all
routines that expect a drawable unless otherwise specified.
Here is the relevant portion of the example above rewrit-
ten to use the drawable namefoo instead of the default:

Drawable -drawable foo -xrange 0,10 \
-yrange 0,20

AxesTicsLabels -drawable foo \
-title "A Sample Graph" \
-xtitle "The X-Axis" -ytitle "The Y-Axis"

PlotPoints -drawable foo -table t \
-xfield x -yfield y -style triangle \
-linecolor red

The powerful aspect of a drawable is that it enables a
user to place multiple (potentially overlapping) drawable
regions onto the drawing surface. This feature can be used
to implement a number of interesting graphs. For exam-
ple, in Figure 3 (taken from [6]), two regions of the graph
are of interest but hard to see due to their small size. Thus,
one can create two additional drawables and plot closeups
of the data in those regions:

These types of closeups are trivial to implement. Here
is the code for one of them (the entire example, and many
others, can be found on the Zplot web site):

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

Time (s)

700 710 720
0

2

4

6

3280 3290 3300 3310
0

2

4

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8
DGRAID: Measuring Imperfect Placement

N
um

be
r

of
 M

is
pl

ac
ed

 B
lo

ck
s

(T
ho

us
an

ds
)

Figure 3:Nested Plots. A plot from an earlier paper of ours
is recreated. Two closeups are made in the lower graph, with
only a few lines of Tcl code required.

Drawable -drawable copyc1 -coord 135,90 \
-dimensions 40,40 -xrange 700,720 \
-yrange 0,6000

Table -table copyc1 -columns c0,c1
TableSelect -from copy -to copyc1 \

-where {($c0>=700) && ($c0<=720)}
AxesTicsLabels -drawable copyc1 \

-xauto ,,10 -yauto ,,2000 \
-linecolor gray -fontsize 6

PlotLines -drawable copyc1 -table copyc1 \
-xfield c0 -yfield c1 -linewidth 0.25

This example also demonstrates a number of parame-
ters that theDrawable routine can be passed. For exam-
ple, a user can specify its exact position with thecoord
flag and its size with thedimensions parameter.

Multiple drawables can also be used to plot data with
multiple y axes in a simple and straightforward manner.
In this example, we plot the same data from the example
above, except onto an overlapping drawable that maps the
y range from 0 up to 20 (instead of 0 to 10). The code is
below; the resulting graph (Figure 4) thus plots the same
data twice, once in red (as relative to the left y-axis), and
once in green (as relative to the right).

Drawable -drawable second -xrange 0,10 \
-yrange 0,20 -width 230

AxesTicsLabels -drawable second -style y \
-ytitle "Second Y-Axis" -labelstyle in \
-yaxisposition 10 -yauto ,,4

PlotPoints -drawable second -table t \
-xfield x -yfield y -style triangle \
-linecolor green -fill t -fillcolor green

2.3 The Plot* Family
There are currently eight members in thePlot* fam-
ily: Heat, VerticalBars, HorizontalBars,

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
Multiple Y Axes

T
he

 Y
-A

xi
s

The X-Axis

0

4

8

12

16

20

S
ec

on
d

Y
-A

xi
s

Figure 4: Multiple Y Axes. The script creates two draw-
ables, the right one with a y-range that is twice as high as the
left one. The same data is plotted on both.

VerticalIntervals, HorizontalIntervals,
Points, Lines, andVerticalFill. Most should
be self explanatory from the name, and examples of each
can be found in Figure 5.

There is also a plotting function that takes an equation
instead of a table:PlotFunction. This routine simply
takes a function to evaluate and draws the result.

2.4 Axes, Tics, and Labels
A single complex routine supports the generation of axes,
tic marks, and labels for a graph. It is (not surprisingly)
calledAxesTicsLabels. It has too many arguments
to describe here in any detail. However, it is often quite
simple to use. For example, to specify the title, label for
the x-axis, and label for the y-axis, one simple do the fol-
lowing:

AxesTicsLabels -title "Title" \
-xtitle "X-Axis" -ytitle "Y-Axis"

Internal algorithms compute reasonable locations for
said labels (depending on whether tic marks are used, for
example). Further, when the guesses are wrong, one can
use a shift argument to move the text to a more appro-
priate location (e.g., the-titleshift argument can be
passed the value3,0 to bump it 3 points to the right).
Many of the other options deal with customizations such
as font selection, rotation, color, and so forth.

2.5 Legend
Finally, Zplot provides support in most plotting routines
for the addition of a legend. A given plot routine takes an
optional-legend flag which indicates the name to be
associated with the data. The user subsequently calls the
Legend routine, to place the legend on the screen and
control its appearance.

Lines Points Lines & Points Filled

Error Bars Box Plots Intervals Functions

Vertical Bars Stacked Bars Horizontal Bars Heat

Figure 5:Multiple Plot Types. This example plots a number
of different plot types, as described in each title. Of course, many
other variations are possible.

3 PostScript Generation
Zplot is built on top of a number of underlying PostScript
primitives, including basic lines, filled (or empty) shapes,
and text. Each of these routines is used by the plotting
routines and other entities that wish to create graphical or
textual elements upon on the drawing surface. We now
describe the primitives in turn.

PsLine -coord <x1,y1:x2,y2:...:xN,yN>
-linecolor <color>
-linewidth <width in pts>
-linecap <0, 1, or 2>
-linejoin <0, 1, or 2>
-linedash <dash pattern>
-closepath <true or false>

ThePsLine primitive is passed a set of coordinates,
some basic information about the line, and then pro-
duces a line that connects the coordinates in the resulting
PostScript. All PostScript primitives take coordinates in
PostScript “ems”, each of which is 1/72nd of an inch. The
PsLine primitive also takes additional arguments that al-
low the addition of an arrow to the end of the line; we omit
these parameters for the sake of space.

PsBox -coord x1,y2:x2,y2
PsCircle -coord x,y -radius r
PsPolygon -coord x1,y1:...:xN,yN

-linecolor
-linedash
-linecap
-fill <true or false>
-fillcolor <color of each element>
-fillstyle <style>
-fillsize <size of element in pattern>
-fillskip <amount to skip between ...>
-fillshift <+x,+y>
-bgcolor <color behind pattern>

0 1 2 3 4 5 6
0

2

4

6

8

10

Lots of Patterns

T
he

 Y
-A

xi
s

The X-Axis

Stuff
Things
Junk
Yards
Doods

Figure 6:Multiple Patterns. This example plots a number
of different patterns in a set of stacked bars. As one can see,
patterns such as diagonal lines and triangles can be used to fill
a region. The example also includes a legend.

Each of these shape routines take a variety of arguments
that describe their coordinates, and then all take three dif-
ferent sets of arguments that characterize the line around
the shape (-line*), the fill of the shape (-fill*), and
the background color behind the shape (-bgcolor). The
line descriptors match those ofPsLine above, and the
background color is straightforward. Most interesting,
then, is the variety and flexibility provided by the pattern
descriptions.

The -fill* parameters allows users to specify a
fill pattern for a region. The most important parameter
is -fillstyle, which determines how the region is
filled. Current styles that are supported includesolid,
hline, vline, dline1, dline2, circle,
square, triangle, utriangle; more are added
occasionally (when the author needs them). Each
pattern takes two arguments to determine its contents:
-fillsize and-fillskip. Within a given pattern,
-fillsize determines the size of each element in
the pattern, and-fillskip the space between each
element. Figure 6 is a bar graph that demonstrates the use
of some of these patterns.

PsText -coord <x,y>
-text <the text to write on canvas>
-font
-color <color>
-rotate <angle of rotation>
-anchor <how to anchor the text>
-bgcolor <background color behind text>
-bgborder <size of border around text>

The last primitive we describe isPsText, which draws
text onto the screen. Most of its parameters are straight-
forward. However, the most crucial argument to under-
stand is theanchor. This parameter describes how the

Anchor Is l,l

Anchor Is l,c

Anchor Is l,h

Anchor Is c,l

Anchor Is c,c

Anchor Is c,h

Anchor Is r,l

Anchor Is r,c

Anchor Is r,h

Figure 7:Text Anchors. This example shows how to specify
text anchors.

text should be anchored relative to the coordinate that
was passed to the routine. The parameter takes the form
xanchor,yanchor, where xanchor specifies the an-
choring of the text in the x direction (eitherl for left, c
for center, orr for right), and yanchor the anchoring in
the y direction (l for low, c for center, andh for high).
Figure 7 shows the different possible anchors (the coor-
dinates passed to the text drawing routine are highlighted
with a red circle).

4 Commenting on Tcl
We now comment on a few aspects of Tcl that arose dur-
ing the implementation of Zplot. We begin with perfor-
mance issues, comment on namespaces and packages, and
finally discuss error checking.

4.1 Performance
As floating point specialist William Kahan famously said,
“The fast drives out the slow, even if the fast is wrong.”
Tcl is slow. Thus, Zplot is slow. If one tries to plots graphs
with thousands of data points, one will have to wait, even
on a modern processor. To show how slow, I present a
rudimentary performance study of Zplot performance.

In the experiment, I simply timed how long it takes to
produce a plot given an input file with 100,000 data points.
The experiment was run upon a MacBook Pro laptop with
2.16 GHz Intel Core 2 Duo processors, 1 GB of RAM,
and running Mac OS X 10.4.9. Five trials were run, and
the input file fit comfortably into main memory (thus, no
substantial I/O activity occurs during the experiment).

The average time to run Zplot over this large data file
was 45.93 seconds (with very little variation). In compar-
ison with other tools written in C, Zplot performance is
many orders of magnitude slower (e.g., plotting the same
input file with gnuplot is nearly instantaneous). It is true
that Zplot was not written with optimized performance in
mind, but it was not written to be horrifically slow, either.
It is simply the case that building clean Tcl programs with
many nested subroutine calls leads to poor performance.

Ironically, John Ousterhout’s paper [5] points out many
reasons that operating system performance does not scale
with processor performance; analogous arguments can
be made about Tcl. Although processors have improved
greatly in the past 10 years, Tcl remains slow in both a

relative and absolute sense. It is this author’s opinion that
this performance flaw is one major reason Tcl has not be-
come more broadly accepted.

4.2 Namespaces and Packages
Tcl namespaces are a simple and powerful feature; as a
long-time Tcl user, they have been a welcome addition.
Somehow, I do not find myself using Tcl packages; in-
stead, I just create a single large Tcl file from the various
source files of Zplot, andsource said file to use Zplot.
Primitive? Certainly. And yet somehow I prefer it to the
current package creation system.

4.3 Error Checking
I found myself cursing the lack of assistance for error
checking in Tcl. For example, when a user calls a routine
and accidentally passes text instead of a numeric value to
a particular routine, if one is not careful, some kind of Tcl
error message will get printed and the program aborted –
not very user-friendly.

To cope with this problem, I wrote a generic argument
parsing package that performed type checking and other
type-specific checks on a per-argument basis. Internally,
most user-callable routines begin with a declaration as fol-
lows:

proc Table {args} {
set default {
{"table" "default" \

"isString 1" "name to call table"}
{"file" "" \

"isFile 1" "file to read from"}
{"separator" "" "isString 1" \

"if empty, whitespace; \
otherwise, whatever is specified"}

}
ArgsProcess Table default args use \
"Create a table. If ’-file’ is specified, \
load the table from a file. Otherwise, \
’-columns’ must be specified and give a \
comma-separated list of columns in the \
table (e.g., ’-columns x,y,mean’)."

...

For each argument, a routine is specified that is used to
perform whatever checks are relevant. For example, for
the-table parameter above, the routineisString is
called to ensure that the table name is a string (a primi-
tive perform of dynamic type-checking). Defaults are also
specified in case the user does not specify a given argu-
ment (e.g., -table will default to thedefault table).
When a problem occurs, an error message prints out each
parameter, its default value, the info string per parame-
ter (e.g., name to call the table), and the over-
all description of the function as specified in the call to
ArgsProcess. As mentioned above, one can call most
routines with a bad flag to obtain said information.

5 Related Work
Much of the frustration I spoke of earlier was with a tool
known as gnuplot [7]. Gnuplot provides excellent support
for simple line graphs and scatter plots, as well as numer-
ous other graph types. However, its lack of reasonable
support for bar charts was one of the main driving forces
behind Zplot. However, I should note that the PostScript
produced by gnuplot was clear and easy to read, sparking
my interest in that language, and thus (indirectly) making
Zplot possible. Great PostScript resources, for those who
are interested, are the blue book, red book, and (to some
extent), the green book [1, 3, 2]; all are available online.

As I demonstrated Zplot to others, many people re-
ferred me to Ploticus [4], which is a more powerful and
complete tool than gnuplot and is capable of producing
a large variety of interesting graph types. Many of the
features found in Zplot are also found in ploticus (e.g.,
a ploticus “area” is akin to a Zplot Drawable), and I of-
ten found myself downloading examples from the Ploti-
cus web page to see if Zplot could easily do what Ploticus
already does. Indeed, at one point I even considered drop-
ping Zplot development and simply adding a few features
to Ploticus that I found lacking (e.g., bar graphs with a
variety of pretty patterns). However, one look at the Ploti-
cus source code convinced me that I might be on the right
path (or, at least, a different path). Ploticus is comprised
of over 60,000 lines of C code. Zplot, in contrast, is less
than 5,000 lines of Tcl; although not always the prettiest
code, certainly quite a bit simpler. This comparison is cer-
tainly a bit unfair, as Zplot is not as powerful as Ploticus,
but I feel quite positive that it will never be nearly as large
or complex, a testimony to the power of a higher-level
language such as Tcl.

6 Future Work
Zplot is incomplete in a number of ways. For example,
although the PostScript it generates is simple, it is often
inefficient (i.e., the resultant PostScript is larger than it
need be). Some simple optimizations would noticeably
reduce the size of the resultant PostScript files.

Error reporting has improved throughout the course of
Zplot’s development, but could always be better. The de-
velopment of a more powerful argument processing pack-
age (as described above) helped a great deal, but there are
still some cases where a user could trigger an internal as-
sertion to fail and thus will see a stack trace telling them
where something went wrong. Better error reporting re-
mains something I plan to look into.

Finally, there are a host of features which would be use-
ful. Better support for time and date formats would be
of great benefit. More line styles, point styles, and fill
patterns are always helpful. A facility to automate graph
generation (much like the “prefabs” offered by ploticus)
would probably be well-received.

7 Conclusions
In this paper, I have introduced Zplot, a pure Tcl package
for drawing PostScript figures. Zplot provides a number
of powerful but simple tools for making beautiful two-
dimensional plots. In the course of building Zplot, I was
again surprised by how slow Tcl is; however, its simplicity
and power make programming in Tcl something unusual
(to me) among its counterparts: fun.

If you are interested in Zplot, please visit:
www.zplot.org.

Acknowledgments
The author thanks his colleagues at the University of
Michigan for all of their support during the sabbatical year
which made Zplot possible. The author also thanks his
wife for the numerous discussions she was forced to have
about Zplot, which she did gladly and gracefully, whether
she wanted to or not. Finally, the author thanks his two
daughters, Anna and Maddy, for looking at some of the
resulting graphs and “oohing” and “ahhing” at the appro-
priate times.

References
[1] Adobe Systems Inc. PostScript Lan-

guage Tutorial and Cookbook. www-
cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF,
1985.

[2] Adobe Systems Inc. PostScript Lan-
guage Program Design. www-
cdf.fnal.gov/offline/PostScript/GREENBK.PDF,
1988.

[3] Adobe Systems Inc. PostScript Lan-
guage Reference Manual. www-
cdf.fnal.gov/offline/PostScript/PLRM2.pdf, 1990.

[4] Stephen C. Grubb. Ploticus. ploticus.sourceforge.net,
2007.

[5] John K. Ousterhout. Why Aren’t Operating Systems
Getting Faster as Fast as Hardware? InProceedings
of the 1990 USENIX Summer Technical Conference,
Anaheim, CA, June 1990.

[6] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Im-
proving Storage System Availability with D-GRAID.
In Proceedings of the 3rd USENIX Symposium on File
and Storage Technologies (FAST ’04), pages 15–30,
San Francisco, California, April 2004.

[7] Thomas Williams, Colin Kelley, Russell Lang, Dave
Kotz, John Campbell, Gershon Elber, and Alexander
Woo. Gnuplot. www.gnuplot.info, 2007.

