Making Beautiful Graphs with Zplot

Remzi H. Arpaci-Dusseau
University of Wisconsin, Madison

Abstract A Sample Graph

This paper introduces Zplot, a Tcl library for making two- 107
dimensional data plots. Zplot provides a simple set of
primitives that allow users to input and manipulate data,
plot said data in a variety of formats, and decorate the re- v
sulting graphs with axes, labels, and other textual accents%S 6 A

Zplot then outputs encapsulated PostScript for ease of in->-
clusion in technical documents. 2 24 A

|_
1 Introduction

Over the past 20 years or so, | have used a variety of tools A A
to generate data graphics for the various technical papers
with which I have been involved. These tools left me de- 0 2 4 6 8 10
spondent. They seemed incapable of producing all but the The X-Axis
most basic of graphs. Many common graph types were
not well supported (e.g., bar graphs). Simple data manip-
ulations were forced into pre-processing steps, creatingigure 1:An Example Graph. The most bare-boned of plots
clumsy tool chain. Manual manipulation on the resultatifat one can make with Zplot.
PostScript was often required to achieve the desired result

Zplot is the fruit that was born of this frustration. Zplot
is a pure Tcl library that allows the creation of two# input the library
dimensional data graphics in a flexible and powerful mapeur ce zpl ot. tcl
ner. Typical graphs are created with only a few lines GRMESPace inport Zplot:: x

Tcl, and complex and intricate graphs can be produ adesc” be .the dEaW' ng sulr'f ace :
. SCanvas -title "file.eps" -dinensions 300,200
from only tens of lines of code.

. . . . # | oad sonme data
In this document, | describe Zplot. First, | give aRapie -table t -file "file. data"

overview of the tool and the bas_ic primitive_s it provides#._ meke a drawabl e region for a graph
Then, | describe each of the basic routines in more detad,awabl e - xrange 0, 10 -yrange 0, 20
showing how they can be combined to produce a wigenake some axes
range of interesting graphs. Zplot drawing routines are AitesTi csLabel s -title "A Sanple G aph" \
built upon a set of low-level PostScript-generating com- -xtitle "The X-Axis" -ytitle "The Y- Axis"
mands; these hide many of the details of generating c8r! ot the points _ _
rect PostScript from the rest of Zplot, boiling down mogtl 0t Poi nts -table t -xfield x -yfield y \
activities to simple drawing commands that place lines, StY! € triangle -linecolor red
. #.finally, output the graph to a file

shapes, and text on the drawing surface. | then concl N . e .

. SRender -file "file.eps
the paper with a few comments about Tcl, related and fu-
ture work, and a final summary.

In this example, the user creates a graph by first de-
2 Oveaview scribing the drawing surface by callirfgs Canvas and

I now describe the basic primitives provided by Zplot. Les[pe(_:ifying its dimen_sions. Then, th.e user callsTael e)
tine to load data into Zplot, getting the data from a file

us start with a typical (if simple) graph as an example, ahgt S
use this to drive the discussion of the different elemerits | . dat a). The user, wishing to plot the data, now

of Zplot. A typical graphing script might be written astc_rea.ltgs_a drav;a?le regir:)n by c:#:ing Iheatha:]bl(;e rou—bl .
follows (with the results of the graph shown in Figure 1 IN€, doing so detines where on the canvas e drawab’e Is,
and also how to map data points onto the drawing surface

(e.g., the range of x values and y values that map onto this
drawable). With a drawable defined, the user can now call

one of a variety of plotting routines (e.@), ot Poi nt s) Using Table Selection
to plot the data onto the drawable. The plotting routines
generally take a large number of arguments, enabling a g4 ®
wide variety of plots to be produced; in this case, the
user chooses to draw a red triangle at each (x,y) point ofg 6 ®
the graph. Finally, the user adds some graphical and texs>
tual decorations to help clarify the graph (in this case, by§ 4 A
simply calling theAxesTi csLabel s routine), and then A 4
renders the PostScript to a file by calling PsRender. | now 27 4 4 4
describe each of these primitives in more detail.
Note that each of these routines takes a large numberof "5 |1 5 3 4 5 & 7 8 o 10
optional parameters. To find out what these are (without The X-Axis
perusing the source code), one should simply call the rou-
tine and pass it thehel p flag (or any bad flag); a useful

error message about the routine and all of its parameteigure 2: Table Selection. The example uses a simple table
(including default values) will be printed. selection to find y-values that are greater than 5. Then,ehes

points are plotted as green circles.

10

o

2.1 Table

There are numerous routines available to users to input) .
and manipulate data: these are known asTael ex computing means and deviations over a column, and

routines. The most commonly used routine is the bhabl eBucket i ze can be used to place data into bins.

sic Tabl e routine; usually, this routine is used to inpufll of these primitives are built on lower-level table rou-

a file and then plot its points. A typical file (such agines that access each row of a table and perform opera-

fil e. dat aabove)looks like this: tions on its contents; thus, more complex operations on
tables can be readily assembled by adventurous users.

2.2 Drawable

The drawable is likely the most important abstraction

that Zplot implements. A drawable is created by the

Dr awabl e command. Each drawable has a name; the

default name iglef aul t and this default is used by all

9 4 routines that expect a drawable unless otherwise specified.

10 8 Here is the relevant portion of the example above rewrit-

ten to use the drawable narheo instead of the default:

The first line contains the “schema” for the table, with

names for each column; these names are subsequepigmebl e -drawaebl e foo -xrange 0,10 \

used to refer to the data when manipulating it or drawing~Y' @ange 0, 20

it to the screen. AxesTi csLabel s -drawabl e foo \

One powerful routine is th&abl eSel ect command; ;'“““ee ﬁTﬁzn?([ixi?pr‘yt}“ e "The Y- Axis"

it allows one to perform a database-like selection ovelLa i poi nt's -drawabl e foo -table t \

table and putthe resultsinanew table. Hereisanexample el q x -yfield y -style triangle \

that selects data from tablewith y-values above 5, and .| necol or red

plots green circles around said points (the results of which

are shown in Figure 2): The powerful aspect of a drawable is that it enables a

user to place multiple (potentially overlapping) drawable

Table -table thi -colums x,y regions onto the drawing surface. This feature can be used

Tabl eSel ect -fromt -to thi -where {$y > 5} g implement a number of interesting graphs. For exam-

PlotPoints -table thi -xfield x -yfield y \' e inFigure 3 (taken from [6]), two regions of the graph
-style circle -linecolor green -size 4 are of interest but hard to see due to their small size. Thus,

e can create two additional drawables and plot closeups

the data in those regions:

These types of closeups are trivial to implement. Here

ﬁ_the code for one of them (the entire example, and many

hers, can be found on the Zplot web site):

y

A WNPFROH
O WN R O X

There are a number of other useful table functiof®
which are not covered here, mostly for manipulatin
and summarizing data. For examplebl eMat h can
be used to perform a mathematical operation (or i

. . gt
deed, any valid Tcl expression) on a column of data:
The routine Tabl eConput eMeanEt ¢ is useful for

DGRAID: Measuring Imperfect Placement Multiple Y Axes

8 107 r 20
7 67
g 8 & 16
o 44
3 1)
2
(%]
"_J 24 X 64 A 12 é
2 N >
S, > °
o T T T T T T T J w c
3, 0 500 1000 1500 2000 2500 3000 3500 4000 4500 g 44 A 48 8
g . &
=3 : A A A
2 .|
2 2 ¢ 2 A A A A -4
o 4 A A
= N 0
2 44 X 700 710 720 2 A A A A A
£ | . A A
2 2 i 3280 3290 3300 3310 0 T T T T T T T T T 0
S o 0 1 2 3 4 5 6 7 8 9 10
0 - ok The X-Axis

0 500 1000 1500 2000 2500 3000 "'ésoo 4000 4500
Time (s)
Figure 4: Multiple Y Axes. The script creates two draw-
Figure 3:Nested Plots. A plot from an earlier paper of ours ables, the right one with a y-range that is twice as high as the

is recreated. Two closeups are made in the lower graph, wigft one. The same data is plotted on both.
only a few lines of Tcl code required.

Vertical Intervals, Horizontallntervals,
Drawabl e -drawable copycl -coord 135,90 \ pgjnts, Lines, andVertical Fill. Most should
-di mensi ons 40, 40 -xrange 700, 720 \ be self explanatory from the name, and examples of each
-yrange 0, 6000 can be found in Figure 5.

Tabl e -tabl e copycl -columms cO,cl
Tabl eSel ect -from copy -to copycl \ There is also a plotting function that takes an equation

-where {($c0>=700) && ($c0<=720)} instead of a tablePl ot Funct i on. This routine simply
AxesTi csLabel s - drawabl e copycl \ takes a function to evaluate and draws the result.
-xauto ,,10 -yauto ,, 2000 \
-linecolor gray -fontsize 6 2.4 AXxes, Tics, and Labels
PlotLines -drawabl e copycl -table copycl \ A gingle complex routine supports the generation of axes,
-xfield cO -yfield cl -linewidth 0.25 tic marks, and labels for a graph. It is (not surprisingly)

This example also demonstrates a number of pararﬁgl-ledAxeST' csLabel's. It has too many arguments

: 0 describe here in any detail. However, it is often quite
ters that thér awabl e routine can be passed. For exa Simple to use. For example, to specify the title, label for

ple, a user can specify its exact position with d@r d he y_axis, and label for the y-axis, one simple do the fol-
flag and its size with thdi mensi ons parameter. lowing:

Multiple drawables can also be used to plot data with
multiple y axes in a simple and straightforward mannetyesTi csLabel s -title "Title" \
In this example, we plot the same data from the example-xtitle "X-Axis" -ytitle "Y-Axis"
above, except onto an overlapping drawable that maps the
y range from O up to 20 (instead of 0 to 10). The code isInternal algorithms compute reasonable locations for
below; the resulting graph (Figure 4) thus plots the sarsaid labels (depending on whether tic marks are used, for
data twice, once in red (as relative to the left y-axis), amstample). Further, when the guesses are wrong, one can
once in green (as relative to the right). use a shift argument to move the text to a more appro-
priate location€.g, the-ti t | eshi ft argumentcan be
passed the valug, 0 to bump it 3 points to the right).
Many of the other options deal with customizations such
as font selection, rotation, color, and so forth.

Dr awabl e -drawabl e second -xrange 0, 10 \
-yrange 0,20 -wi dth 230

AxesTi csLabel s -drawabl e second -style y \
-ytitle "Second Y-Axis" -labelstyle in\
-yaxi sposition 10 -yauto ,,4

Pl ot Points -drawabl e second -table t \ 25 Legend
-xfield x -yfieldy -style triangle \ Finally, Zplot provides support in most plotting routines
-linecolor green -fill t -fillcolor green o ihe addition of a legend. A given plot routine takes an
optional- | egend flag which indicates the name to be
2.3 ThePlot* Family associated with the data. The user subsequently calls the

There are currently eight members in tReot * fam- Legend routine, to place the legend on the screen and
ily: Heat, Vertical Bars, Horizontal Bars, controlits appearance.

Vertical Bars ~ Stacked Bars Horizontal Bars Heat Lots of Patterns

ol L B=
8-] stuff
E B Box Plot: Int | Functi g Z Things
rror Bars ox Plots ntervals unctions
WS i
I = 2 1 bood:
— oods
ot 1l o =
A . A . . 24
Lines Points Lines & Points Filled
X
X 0 T T T T T 1
X Xy X>< 0 1 2 3 4 6
X X The X-Axis

Figure 5:Multiple Plot Types. This example plots a numberFigure 6:Multiple Patterns. This example plots a number

of different plot types, as described in each title. Of ceprsany ©f différent patterns in a set of stacked bars. As one can see,
other variations are possible. patterns such as diagonal lines and triangles can be usedl to fi

a region. The example also includes a legend.

3 PostScript Generation

. Each of these shape routines take a variety of arguments
Zplo_t IS bu'.lt on tqp ofa qumber o_f underlying POStSCrIpthat describe their coordinates, and then all take three dif
primitives, including basic lines, filled (or empty) shape

!) Terent sets of arguments that characterize the line around
and text. Each of these routines is used by the plotti shape-(i nex), the fill of the shape-(f i I | *), and

:g;:&g?seiznrgeog?seLegztlss E[?]z;t c\;l\:lz:\t]vitno C;i?ffcgeraw:ﬁlt% background color behind the shape (-bgcolor). The
P 9 ' e descriptors match those 86Li ne above, and the

describe the primitives in turn. background color is straightforward. Most interesting,

PsLi ne -coord <x1,yl:x2,y2:...:xN yN> then, is the variety and flexibility provided by the pattern
-linecol or <col or> descriptions.
-linewidth <width in pts> The -fill* parameters allows users to specify a
-linecap <0, 1, or 2> fill pattern for a region. The most important parameter
-linejoin <0, 1, or 2> is -fillstyle, which determines how the region is
-linedash <dash pattern> filled. Current styles that are supported inclute i d,
-closepath <true or false> hline, vline, dlinel, dline2, circle,

quare, triangle, utriangle;moreare added

ThePsLi imitive i d a set of coordinates 142"
et e primitive IS passed a set o1 coordinate ccasionally (when the author needs them). Each

some basic information about the line, and then pr8 tern takes s to determine it tents:
duces a line that connects the coordinates in the resul (Ierln rakes v(;/ofa.\rlgrmfln S \7V‘th('a ermine is (iton ents:
PostScript. All PostScript primitives take coordinates in stzeand-T111 Skl p. VAN a given pattem,

PostScript “ems”, each of which is 1/72nd of an inch. Th’ﬁfeI Ipl’;\tstlerzne sr:e;efrrinllr:essk ithpe tr?lezesp(;fcsaggtv:eleer:eenz:clhn

PsLi ne primitive also takes additional arguments that aﬁ-l ¢ Fi 6isab h that d irates th
low the addition of an arrow to the end of the line; we omﬁfemen ' fltgg]ure 'St? argraph that demonstrates the use
these parameters for the sake of space. of some ofthese patterns.

PsText -coord <x,y>
-text <the text to wite on canvas>
-font

PsBox -coord x1,y2:x2,y2
PsCircle -coord x,y -radius r

PsPol ygon -coord x1,y1:...:xN, yN
-linecol or -col or <col or>
-linedash -rotate <angle of rotation>
-linecap -anchor <how to anchor the text>
-fill <true or fal se> -bgcol or <background col or behind text>

_fillcolor <color of each el ement> - bgborder <size of border around text>

-fillstyle <style> L . .
fillsize <size of element in pattern> The last primitive we describe Bs Text , which draws

-fillskip <amount to skip between ...> text onto the screen. Most of its parameters are straight-
-fillshift <+x, +y> forward. However, the most crucial argument to under-
-bgcol or <col or behind pattern> stand is theanchor . This parameter describes how the

. o o relative and absolute sense. It is this author’s opinion tha
Anchor Is I,h Anchor Is ¢,h Anchor Is 1,h this performance flaw is one major reason Tcl has not be-

sAnchor Is I,c Anchor Is ¢c,c Anchor Is r,c come more broadly accepted.

Anchorlis |l Anchaqrlisc,] Anchorlisr,l 4.2 Namespaces and Packages
Tcl namespaces are a simple and powerful feature; as a
long-time Tcl user, they have been a welcome addition.
Figure 7:Text Anchors. This example shows how to specifgsomeho.w’ | do not fm.d myself usmg_ Tcl packages;. n-
tead, | just create a single large Tcl file from the various
text anchors. . .
source files of Zplot, andour ce said file to use Zplot.
Primitive? Certainly. And yet somehow | prefer it to the
text should be anchored relative to the coordinate tlrirrent package creation system.
was passed to the routine. The parameter takes the fo .
P P 18 Error Checking

xanchor, yanchor, where xanchor specifies the an- _ _
choring of the text in the x direction (eithérfor left, ¢ | found myself cursing the lack of assistance for error

for center, o for right), and yanchor the anchoring irfhecking in Tcl. For example, when a user calls a routine
the y direction { for low, ¢ for center, anch for high). and accidentally passes text instead of a numeric value to
Figure 7 shows the different possible anchors (the cogrParticular routine, if one is not careful, some kind of Tcl

dinates passed to the text drawing routine are highlighfdor message will get printed and the program aborted —

with a red circle). not very user-friendly.
) To cope with this problem, | wrote a generic argument
4 Commenti Nng on Tdl parsing package that performed type checking and other

We now comment on a few aspects of Tcl that arose di¥Pe-Specific checks on a per-argument basis. Internally,
ing the implementation of Zplot. We begin with perforMostuser-callable routines begin with a declaration as fol
mance issues, comment on namespaces and packageé?&‘fﬁil

finally discuss error checking. proc Table {args} {

4.1 Performance set default { .

As floati int ialist Will Kahan f | id {"tabl e defaul t" \

/ s floating point specialist William Kahan famously sai ' “isString 1" "name to call table"}
The fast drives out the slow, even if the fast is wrong. ("file" "o \

T(_:I is slow. Thus, Zplotis s_Iow. If one_tries to plots graphs "isFile 1" “"file to read front}
with thousands of data points, one will have to wait, even {"separator" "" "isString 1" \

on a modern processor. To show how slow, | present a "if enpty, whitespace; \

rudimentary performance study of Zplot performance. ot herwi se, whatever is specified"}

In the experiment, | simply timed how long it takes to }
produce a plot given an input file with 100,000 data points. Ar gsProcess Tabl e default args use \
The experiment was run upon a MacBook Pro laptop with * & €ate a table. 1f "-file is specified, \
2.16 GHz Intel Core 2 Duo processors, 1 GB of RAM, |0ad the table froma file. Qherwise, \
and running Mac OS X 10.4.9. Five trials were run, and - O UMs’ nust be specified and give a \
the input file fit comfortably into main memory (thus, no comm-separated [ist of cofums in the \

. . . . ! table (e.g., '-colums Xx,y,nean’)."

substantial 1/0O activity occurs during the experiment). o

The average time to run Zplot over this large data file
was 45.93 seconds (with very little variation). In compar- For each argument, a routine is specified that is used to
ison with other tools written in C, Zplot performance iperform whatever checks are relevant. For example, for
many orders of magnitude slowes.g, plotting the same the- t abl e parameter above, the routineSt ri ng is
input file with gnuplot is nearly instantaneous). It is truealled to ensure that the table name is a string (a primi-
that Zplot was not written with optimized performance itive perform of dynamic type-checking). Defaults are also
mind, but it was not written to be horrifically slow, eitherspecified in case the user does not specify a given argu-
Itis simply the case that building clean Tcl programs witment €.g, - t abl e will default to thedef aul t table).
many nested subroutine calls leads to poor performand&/hen a problem occurs, an error message prints out each

Ironically, John Ousterhout’s paper [5] points out marnyarameter, its default value, the info string per parame-
reasons that operating system performance does not stalée.g, name to call the tabl e), and the over-
with processor performance; analogous arguments @lndescription of the function as specified in the call to
be made about Tcl. Although processors have improvadgsPr ocess. As mentioned above, one can call most
greatly in the past 10 years, Tcl remains slow in bothrautines with a bad flag to obtain said information.

5 Reated Work 7 Conclusions

Much of the frustration | spoke of earlier was with a todh this paper, | have introduced Zplot, a pure Tcl package
known as gnuplot [7]. Gnuplot provides excellent suppdar drawing PostScript figures. Zplot provides a number
for simple line graphs and scatter plots, as well as numef-powerful but simple tools for making beautiful two-
ous other graph types. However, its lack of reasonaldignensional plots. In the course of building Zplot, | was
support for bar charts was one of the main driving forcegain surprised by how slow Tclis; however, its simplicity
behind Zplot. However, | should note that the PostScrighd power make programming in Tcl something unusual
produced by gnuplot was clear and easy to read, spark{tmme) among its counterparts: fun.
my interest in that language, and thus (indirectly) making!f you are interested in Zplot, please Vvisit:
Zplot possible. Great PostScript resources, for those wiwow. zpl ot . or g.
are interested, are the blue book, red book, and (to so
extent), the green book [1, 3, 2]; all are available online’.ﬂ%kn()\/\lledgments

As | demonstrated Zplot to others, many people réhe author thanks his colleagues at the University of
ferred me to Ploticus [4], which is a more powerful antflichigan for all of their support during the sabbatical year
complete tool than gnuplot and is capable of produciN@iCh made Zplot possible. The author also thanks his
a large variety of interesting graph types. Many of theife for the numerous discussions she was forced to have
features found in Zplot are also found in ploticus (e.cabout Zplot, which she did gladly and gracefully, whether
a ploticus “area” is akin to a Zplot Drawable), and | ofshe wanted to or not. Finally, the author thanks his two
ten found myself downloading examples from the Ploflaughters, Anna and Maddy, for looking at some of the
cus web page to see if Zplot could easily do what Plotict@Sulting graphs and “oohing” and “ahhing” at the appro-
already does. Indeed, at one point | even considered drBpate times.
ping Zplot development and simply adding a few featur
to Ploticus that | found lackinge(g, bar graphs with aeﬁefereﬂceS
variety of pretty patterns). However, one look at the Plofit] Adobe Systems Inc. PostScript Lan-
cus source code convinced me that | might be on the right guage Tutorial and Cookbook. WwWw-
path (or, at least, a different path). Ploticus is comprised cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF,
of over 60,000 lines of C code. Zplot, in contrast, is less 1985.
than 5,000 lines of Tcl; although not always the prettii[s?_r]

code, certainly quite a bit simpler. This comparisonis c Adobe Systems Inc. PostScript Lan-

. . . . : Program Design. WWW-
tainly a bit unfair, as Zplot is not as powerful as Ploticus, guage . .
but | feel quite positive that it will never be nearly as large iggf;al.gov/ offline/PostScripy GREENBK. PDF,
or complex, a testimony to the power of a higher-level '
language such as Tcl. [3] Adobe Systems Inc. PostScript Lan-
6 FEuture Work guage Reference Manual. WWW-

cdf.fnal.gov/offline/PostScript/PLRM2.pdf, 1990.
Zplot is incomplete in a number of ways. For example,

although the PostScript it generates is simple, it is oftéHl Stephen C. Grubb. Ploticus. ploticus.sourceforge.net
inefficient (.e., the resultant PostScript is larger than it 2007.

need be). Some simple optimizations would noticeattlé'/] John K. Ousterhout. Why Aren't Operating Systems

reduce the size of the resultant PostScript files. Getting Faster as Fast as Hardware2Placeedings

Error reporting has improved throughout the course of .
Zplot's development, but could always be better. The de- of the .1990 USENIX Summer Technical Conference
Anaheim, CA, June 1990.

velopment of a more powerful argument processing pack-
age (as described above) helped a great deal, but therg@reviuthian Sivathanu, Vijayan Prabhakaran, Andrea C.
still some cases where a user could trigger an internal as- Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Im-
sertion to fail and thus will see a stack trace telling them proving Storage System Availability with D-GRAID.

where something went wrong. Better error reporting re- |n Proceedings of the 3rd USENIX Symposium on File

mains something I plan to look into. and Storage Technologies (FAST '0gpges 15-30,
Finally, there are a host of features which would be use- San Francisco, California, April 2004.

ful. Better support for time and date formats would be

of great benefit. More line styles, point styles, and fil¥] Thomas Williams, Colin Kelley, Russell Lang, Dave
patterns are always helpful. A facility to automate graph Kotz, John Campbell, Gershon Elber, and Alexander
generation (much like the “prefabs” offered by ploticus) W00. Gnuplot. www.gnuplot.info, 2007.

would probably be well-received.

