

Building an Electronic Design
Automation (EDA) tool

using Tcl/Tk and object oriented
programming.

John Hughes
Software Engineer

Mentor Graphics Corp.
Wilsonville, OR

14th Annual Tcl/Tk Conference
New Orleans, Louisiana

September, 2007

Abstract

This paper discusses how a powerful debugging,
and design analysis, tool was created for the
Design-For-Test (DFT) division at Mentor
Graphics Corp. This tool is called DFTVisualizer
and is a quantum leap forward from the old tool.
The old tool, known as DFTInsight, will be
covered briefly for comparison purposes.

This paper will describe the reasons why Tcl/Tk
was chosen and how the Tcl code interacts with
the C/C++ "kernel" code. It will also cover the
object oriented techniques used to build the tool
and the various packages used in the
implementation.

Introduction & Outline

Several years ago we were presented with the
problem of replacing our current debugging tool
with something new and exciting. The old tool
was basically a schematic viewer that would
allow the user to view portions of their chip
design that were flagged as having design rule
errors.

After nearly a year of meetings and gathering
requirements we had an “idea” of the tool we

needed to build. It needed to encompass the
capability of the old tool, but offer several
additional debugging and analysis features.
Many of those features already existed in the
system, but in the form of textual reports. While
those reports contained the desired information,
they were often labor intensive to read and
“digest”. Showing the data in a graphical form
was a requirement.

The remainder of this paper will be organized as
follows:

1. A brief history of the legacy DFTInsight
tool and textual reports.

2. Requirements and the functional
specification.

3. Language and widget toolkit
considerations.

4. Design of the DFTVisualizer tool.
5. Conclusion with a brief description of the

implementation status and its success or
failure with our customers.

History

The Design-for-Test tools aid in creating test
patterns to run on the Automatic Test Equipment
(ATE) in the “fab” when chips are being
produced. Some DFT tools also modify the chip
design to contain extra circuitry, so the chip can
test itself. This is called Built-in-Self-Test or BIST
for short. Creating test patterns for the latest
microprocessor is a task that is very time and
memory consuming. This can take days, even
using grid computing engines, so the user wants
the debugging process to be intuitive, effective,
and reduce the overall time spent debugging the
design. The Mentor Graphics DFT products have
utilized a tool called DFTInsight to examine the
design via a schematic that represents a portion
of the chip design containing a problem.

See figure 1.

Figure 1. DFTInsight showing a DRC violation

Trouble shooting a DRC violation is only one of
the problems that DFT customers encounter.
There are other issues they need to analyze, like
test coverage. Test coverage reports will tell the
user what areas of the chip are testable and have
test patterns generated for it. The user wants to
see the coverage statistics for the entire chip and
for the different design blocks used to build the
chip. That way they can concentrate their efforts
on the areas with the most problems.
Traditionally this has been a textual report from
the DFT products that the customer has to read.
Often the customer would create scripts to
produce more readable reports or convert them
into CSV for importing into a spreadsheet
program.

The next generation tool would evolve from
strictly a debugging tool for design rule violations,
to one that would allow graphical analysis of
many textual reports. An example text report is
shown below.

<ATPG> report statistics -hierarchy
... analyzing hierarchical statistics (Coll: 8248 faults, Full: 13282)
 # faults UO AU % test
-top- (cm) 13282 0 34 16.07%
 dir (txStatus) 176 0 0 23.86%
 cfsm (cmFSM) 1138 0 0 11.51%
 dec (decode)] 1142 0 22 17.81%
 skipgen (skip_generate) 394 0 0 19.54%
 lbmux (mux2to1b20) 86 0 0 0.00%
 hpdech (hp_decode) 214 0 0 27.10%
 hpdecl (hp_decode) 212 0 0 26.42%
 dcx (detect_cx) 178 0 0 0.00%
 dd (detect_data) 18 0 0 0.00%

Requirements and Functional Spec.

For approximately a year, a team met weekly to
gather and discuss requirements for the new
debug and analysis tool. This team was
comprised of people from technical marketing,
customer support, technical documentation, QA,
and engineering.

Once the requirements were finalized
(theoretically), work began on a functional
specification document. This was largely
authored by the engineering team and approved
by customer support and technical marketing
personnel. This document broke down each
requirement into greater detail and how it would
work in the new tool. One of the requirements
was that there would be multiple windows, or
views, of the data and those windows would be
contained within a framework or parent window.
These windows could be un-docked from the
parent window and re-docked at a later time.

Another requirement is that this new environment
needed to work with our legacy GUI and with our
tool in no-GUI mode. The DFT tools can be run
without a GUI in interactive mode or batch mode.
In interactive mode, the user still needs to be able
to bring up the new debugging and analysis
environment by typing a command. This means
that our command loop needs to work in
conjunction with the TK event loop and not block
each other. The DFT tools are single threaded
applications, but do use grid distribution to run
multiple processes. So, the master process is
single threaded (legacy issue), but it spawns
multiple slave processes on the grid.

Lastly, all of this needs to work in a Unix/Linux
world because that is where the DFT tools are
utilized.

Language & widget toolkit considerations

Several languages and widget toolkits were
considered before coding started on the new tool.
We knew that some of the code would be coded
in C/C++ because that is what the “kernel” of our
DFT products is written in. The DFTInsight tool,
and most of our GUI, was written in Tcl/Tk, but
we did consider the following options:

• Tcl/Tk
• Java
• Qt
• incrTcl/incrTk
• SWidgets (Mentor toolkit)
• mtiWidgets (Mentor toolkit)

incrTcl/incrTk with a C interface to the kernel
code was ultimately selected and we also used
the mtiWidgets toolkit. The reason that the
mtiWidgets were selected is that they were
already used in a popular Mentor product whose
customers liked the GUI, and they were created
with incrTcl/incrTk. Also, since we would be
switching back-and-forth between C++ and Tcl
code, incrTcl just seemed like a natural choice to
do object oriented tasks in Tcl.

Design of the DFTVisualizer

The first thing we did once we started the design
phase was to write a design document that
detailed the different parts of the tool being built.
The document contained the details of the data
structures, classes, and API used by the
framework and the “child” windows within the
framework.

• What is the framework and what does it
do?

o The framework is a parent
window that will contain all of the
other windows in the tool. It also
implements the API that is used
to communicate between
windows. This API is a singleton
class written in incrTcl.

o The framework also includes the
tool bar, menu bar, and an MTI
pane manager window [1].

o The MTI pane manager window
will contain the various debug &
analysis windows, a transcript
window, and a status bar.

o The framework will handle the
selection set across all windows.

o It will also manage the drag-n-
drop operations between
windows.

• Framework API
o addTextToTranscript

o clearTranscript
o showStatusBar
o hideStatusBar
o updateStatusBar
o updatePreferences
o start/endDragNDrop
o methods for cross selection

between windows.
o ……. Many more

• Child Window API

o showChildWindow
o hideChildWindow
o acceptDndObjects
o dock
o undock
o addData
o addObject
o deleteObject
o selectObject
o …… many more

All of these API’s are implemented via incrTcl
methods. For example, here is a portion of the
class signature for ChildWindow. A ChildWindow
is one of the windows contained within the
Framework window/class. For example, a
window showing a hierarchical browser, a
transcript window, a schematic viewer window, a
waveform viewing window, etc.

itcl::class ChildWindow {

 constructor {frameHandle windowName windowFrame \

windowDisplayName} {

 set _windowName $windowName
 set _frameHandle ""
 set _toolBar ""
 set _menuBar ""
 set _frameVars(child_frame) ""
 set _saveFocus ""

 ::ChildWindow::Create $frameHandle $windowFrame \

$windowDisplayName

 }

 destructor {}

 # routine to have the child create itself.
 # i.e. Build the main window for the child
 private method Create {frameHandle childFrame childName}

 # get the name of the child window
 method getChildWindowName {}

 # get the displayed name of the child window
 method getChildWindowDisplayName {}

 # get the frame of the child window
 method getChildWindowFrame {}

 # tell the child to select/deselect something

 method notifySelection {selObject selectType {numOfSwitches "0"} \
{switches ""} }

 # tell the signal child window to select/deselect
 method notifySelectionToSignal {objectType objectName \

dataType selectType}

 # add an object to the child window
 method addObject {object {numOfSwitches "0"} {switches }}

 # delete an object from the child
 method deleteObject {object {numOfSwitches "0"} {switches ""} }

 # add data to Child Window
 method addData {data}

 # delete data from Child Window
 method deleteData {data}

 # Class data members
 # handle/ptr back to framework
 protected variable _frameHandle;

 # generic "name" of a child Window
 protected variable _windowName;

 # displayed "name" of a child Window
 protected variable _displayName;

 protected variable _toolBar
 protected variable _menuBar

 protected variable _exportFormat
 protected variable _dlgToCmdFormat
 protected variable _saveFilePath
 protected variable _saveFileFormat

 protected variable _createDofilePath
 protected variable _replaceDofiletag

 protected variable _saveFocus

} ;# end ChildWindow class

See figure 2 for an example of the DFTVisualizer.

Figure 2. DFTVisualizer with multiple windows
shown

See figure 3 for an example of the graphical
representation of the textual report. This version
will allow the user to browse through the design
hierarchically and they can turn on/off the
columns of data shown. This way the user can
quickly navigate to the data they are most
interested in seeing.

Future Work

Currently there are 11 windows in the
DFTVisualizer to aid with debugging and/or data
analysis. One of the newer windows is a task
manager that helps guide the user through
common operations in the tool and will
automatically open the appropriate windows for
that task. Continuing to evolve the tool to provide
more debugging and analysis options are a high
priority, but looking at a higher level, this
environment may eventually become a
replacement for our current GUI. Streamlining
task based operations will continue to be
important and I expect that some project
management features will be added too.

References

[1] Griffin, Brian S. The MTI Panemanager Widget 2-D Paned Window
for user configurable U/I, Tcl/Tk 2005
(www.tcl.tk/community/tcl2005/abstracts/GUI/Panemanager.pdf)

Figure 3. Graphical reporting of statistical data

Conclusion

The DFTVisualizer has many capabilities and is
an order of magnitude better than its
predecessor. The customers have given great
feedback on the tool and have adopted it very
quickly. We have many stories of customers
saving days or weeks of debugging effort
because of the DFTVisualizer.

Of course the customers have also been quick to
ask for more features; some that we never even
considered in our long term planning.

In general, the tool is solid and the customers are
happy with it. The overall goal was to have a
simple, easy to use, and clear process to debug
problems in the customer design, and to present
data in an easy to analyze format. Based on the
customer response, we have achieved that goal.

Now we just need to add the other million
features that the customers desire! ☺

